Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofu2a Structured version   Visualization version   GIF version

Theorem cofu2a 49084
Description: Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
cofu1a.b 𝐵 = (Base‘𝐶)
cofu1a.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
cofu1a.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
cofu1a.m (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ⟨𝑀, 𝑁⟩)
cofu1a.x (𝜑𝑋𝐵)
cofu2a.y (𝜑𝑌𝐵)
cofu2a.h 𝐻 = (Hom ‘𝐶)
cofu2a.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
cofu2a (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅))

Proof of Theorem cofu2a
StepHypRef Expression
1 cofu1a.b . . 3 𝐵 = (Base‘𝐶)
2 cofu1a.f . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 df-br 5108 . . . 4 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
42, 3sylib 218 . . 3 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
5 cofu1a.k . . . 4 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
6 df-br 5108 . . . 4 (𝐾(𝐷 Func 𝐸)𝐿 ↔ ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
75, 6sylib 218 . . 3 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (𝐷 Func 𝐸))
8 cofu1a.x . . 3 (𝜑𝑋𝐵)
9 cofu2a.y . . 3 (𝜑𝑌𝐵)
10 cofu2a.h . . 3 𝐻 = (Hom ‘𝐶)
11 cofu2a.r . . 3 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
121, 4, 7, 8, 9, 10, 11cofu2 17848 . 2 (𝜑 → ((𝑋(2nd ‘(⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))𝑌)‘𝑅) = ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))‘((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌)‘𝑅)))
13 cofu1a.m . . . . . 6 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ⟨𝑀, 𝑁⟩)
1413fveq2d 6862 . . . . 5 (𝜑 → (2nd ‘(⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩)) = (2nd ‘⟨𝑀, 𝑁⟩))
154, 7cofucl 17850 . . . . . . . 8 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) ∈ (𝐶 Func 𝐸))
1613, 15eqeltrrd 2829 . . . . . . 7 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝐶 Func 𝐸))
17 df-br 5108 . . . . . . 7 (𝑀(𝐶 Func 𝐸)𝑁 ↔ ⟨𝑀, 𝑁⟩ ∈ (𝐶 Func 𝐸))
1816, 17sylibr 234 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐸)𝑁)
1918func2nd 49067 . . . . 5 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
2014, 19eqtrd 2764 . . . 4 (𝜑 → (2nd ‘(⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩)) = 𝑁)
2120oveqd 7404 . . 3 (𝜑 → (𝑋(2nd ‘(⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))𝑌) = (𝑋𝑁𝑌))
2221fveq1d 6860 . 2 (𝜑 → ((𝑋(2nd ‘(⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))𝑌)‘𝑅) = ((𝑋𝑁𝑌)‘𝑅))
235func2nd 49067 . . . 4 (𝜑 → (2nd ‘⟨𝐾, 𝐿⟩) = 𝐿)
242func1st 49066 . . . . 5 (𝜑 → (1st ‘⟨𝐹, 𝐺⟩) = 𝐹)
2524fveq1d 6860 . . . 4 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑋) = (𝐹𝑋))
2624fveq1d 6860 . . . 4 (𝜑 → ((1st ‘⟨𝐹, 𝐺⟩)‘𝑌) = (𝐹𝑌))
2723, 25, 26oveq123d 7408 . . 3 (𝜑 → (((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌)) = ((𝐹𝑋)𝐿(𝐹𝑌)))
282func2nd 49067 . . . . 5 (𝜑 → (2nd ‘⟨𝐹, 𝐺⟩) = 𝐺)
2928oveqd 7404 . . . 4 (𝜑 → (𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌) = (𝑋𝐺𝑌))
3029fveq1d 6860 . . 3 (𝜑 → ((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑅))
3127, 30fveq12d 6865 . 2 (𝜑 → ((((1st ‘⟨𝐹, 𝐺⟩)‘𝑋)(2nd ‘⟨𝐾, 𝐿⟩)((1st ‘⟨𝐹, 𝐺⟩)‘𝑌))‘((𝑋(2nd ‘⟨𝐹, 𝐺⟩)𝑌)‘𝑅)) = (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
3212, 22, 313eqtr3rd 2773 1 (𝜑 → (((𝐹𝑋)𝐿(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179  Hom chom 17231   Func cfunc 17816  func ccofu 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822
This theorem is referenced by:  uptrlem1  49199  uptr2  49210
  Copyright terms: Public domain W3C validator