| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofu2a | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the functor composition. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofu1a.b | ⊢ 𝐵 = (Base‘𝐶) |
| cofu1a.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| cofu1a.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| cofu1a.m | ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) |
| cofu1a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cofu2a.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cofu2a.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| cofu2a.r | ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| cofu2a | ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofu1a.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | cofu1a.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | df-br 5116 | . . . 4 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
| 5 | cofu1a.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 6 | df-br 5116 | . . . 4 ⊢ (𝐾(𝐷 Func 𝐸)𝐿 ↔ 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) | |
| 7 | 5, 6 | sylib 218 | . . 3 ⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (𝐷 Func 𝐸)) |
| 8 | cofu1a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | cofu2a.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | cofu2a.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 11 | cofu2a.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (𝑋𝐻𝑌)) | |
| 12 | 1, 4, 7, 8, 9, 10, 11 | cofu2 17854 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉))𝑌)‘𝑅) = ((((1st ‘〈𝐹, 𝐺〉)‘𝑋)(2nd ‘〈𝐾, 𝐿〉)((1st ‘〈𝐹, 𝐺〉)‘𝑌))‘((𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌)‘𝑅))) |
| 13 | cofu1a.m | . . . . . 6 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) = 〈𝑀, 𝑁〉) | |
| 14 | 13 | fveq2d 6869 | . . . . 5 ⊢ (𝜑 → (2nd ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) = (2nd ‘〈𝑀, 𝑁〉)) |
| 15 | 4, 7 | cofucl 17856 | . . . . . . . 8 ⊢ (𝜑 → (〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉) ∈ (𝐶 Func 𝐸)) |
| 16 | 13, 15 | eqeltrrd 2830 | . . . . . . 7 ⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ (𝐶 Func 𝐸)) |
| 17 | df-br 5116 | . . . . . . 7 ⊢ (𝑀(𝐶 Func 𝐸)𝑁 ↔ 〈𝑀, 𝑁〉 ∈ (𝐶 Func 𝐸)) | |
| 18 | 16, 17 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → 𝑀(𝐶 Func 𝐸)𝑁) |
| 19 | 18 | func2nd 48995 | . . . . 5 ⊢ (𝜑 → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) |
| 20 | 14, 19 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (2nd ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉)) = 𝑁) |
| 21 | 20 | oveqd 7411 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉))𝑌) = (𝑋𝑁𝑌)) |
| 22 | 21 | fveq1d 6867 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘(〈𝐾, 𝐿〉 ∘func 〈𝐹, 𝐺〉))𝑌)‘𝑅) = ((𝑋𝑁𝑌)‘𝑅)) |
| 23 | 5 | func2nd 48995 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝐾, 𝐿〉) = 𝐿) |
| 24 | 2 | func1st 48994 | . . . . 5 ⊢ (𝜑 → (1st ‘〈𝐹, 𝐺〉) = 𝐹) |
| 25 | 24 | fveq1d 6867 | . . . 4 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑋) = (𝐹‘𝑋)) |
| 26 | 24 | fveq1d 6867 | . . . 4 ⊢ (𝜑 → ((1st ‘〈𝐹, 𝐺〉)‘𝑌) = (𝐹‘𝑌)) |
| 27 | 23, 25, 26 | oveq123d 7415 | . . 3 ⊢ (𝜑 → (((1st ‘〈𝐹, 𝐺〉)‘𝑋)(2nd ‘〈𝐾, 𝐿〉)((1st ‘〈𝐹, 𝐺〉)‘𝑌)) = ((𝐹‘𝑋)𝐿(𝐹‘𝑌))) |
| 28 | 2 | func2nd 48995 | . . . . 5 ⊢ (𝜑 → (2nd ‘〈𝐹, 𝐺〉) = 𝐺) |
| 29 | 28 | oveqd 7411 | . . . 4 ⊢ (𝜑 → (𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌) = (𝑋𝐺𝑌)) |
| 30 | 29 | fveq1d 6867 | . . 3 ⊢ (𝜑 → ((𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌)‘𝑅) = ((𝑋𝐺𝑌)‘𝑅)) |
| 31 | 27, 30 | fveq12d 6872 | . 2 ⊢ (𝜑 → ((((1st ‘〈𝐹, 𝐺〉)‘𝑋)(2nd ‘〈𝐾, 𝐿〉)((1st ‘〈𝐹, 𝐺〉)‘𝑌))‘((𝑋(2nd ‘〈𝐹, 𝐺〉)𝑌)‘𝑅)) = (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅))) |
| 32 | 12, 22, 31 | 3eqtr3rd 2774 | 1 ⊢ (𝜑 → (((𝐹‘𝑋)𝐿(𝐹‘𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑋𝑁𝑌)‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4603 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 Basecbs 17185 Hom chom 17237 Func cfunc 17822 ∘func ccofu 17824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-ixp 8875 df-cat 17635 df-cid 17636 df-func 17826 df-cofu 17828 |
| This theorem is referenced by: uptrlem1 49117 |
| Copyright terms: Public domain | W3C validator |