Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem1 Structured version   Visualization version   GIF version

Theorem uptrlem1 49335
Description: Lemma for uptr 49338. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptrlem1.h 𝐻 = (Hom ‘𝐶)
uptrlem1.i 𝐼 = (Hom ‘𝐷)
uptrlem1.j 𝐽 = (Hom ‘𝐸)
uptrlem1.d = (comp‘𝐷)
uptrlem1.e = (comp‘𝐸)
uptrlem1.x (𝜑𝑋 ∈ (Base‘𝐷))
uptrlem1.y (𝜑 → (𝑀𝑋) = 𝑌)
uptrlem1.z (𝜑𝑍 ∈ (Base‘𝐶))
uptrlem1.w (𝜑𝑊 ∈ (Base‘𝐶))
uptrlem1.a (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
uptrlem1.b (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
uptrlem1.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptrlem1.m (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
uptrlem1.k (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
Assertion
Ref Expression
uptrlem1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Distinct variable groups:   ,𝑔   ,   𝐴,   𝐵,𝑔   𝑔,𝐹,,𝑘   ,𝐺   𝑔,𝐻,   𝑔,𝐼,,𝑘   𝑔,𝐽,   𝑔,𝐾,   𝑔,𝐿   𝑔,𝑁,,𝑘   𝑔,𝑊,,𝑘   𝑔,𝑋,,𝑘   𝑔,𝑌,   𝑔,𝑍,   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝐴(𝑔,𝑘)   𝐵(,𝑘)   𝐶(𝑔,,𝑘)   𝐷(𝑔,,𝑘)   (𝑔,𝑘)   𝐸(𝑔,,𝑘)   𝐺(𝑔,𝑘)   𝐻(𝑘)   𝐽(𝑘)   𝐾(𝑘)   𝐿(,𝑘)   𝑀(𝑔,,𝑘)   𝑌(𝑘)   (,𝑘)   𝑍(𝑘)

Proof of Theorem uptrlem1
StepHypRef Expression
1 eqid 2733 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
2 uptrlem1.i . . . . . 6 𝐼 = (Hom ‘𝐷)
3 uptrlem1.j . . . . . 6 𝐽 = (Hom ‘𝐸)
4 uptrlem1.m . . . . . 6 (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
5 uptrlem1.x . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐷))
6 eqid 2733 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 uptrlem1.f . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
86, 1, 7funcf1 17775 . . . . . . 7 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
9 uptrlem1.w . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐶))
108, 9ffvelcdmd 7024 . . . . . 6 (𝜑 → (𝐹𝑊) ∈ (Base‘𝐷))
111, 2, 3, 4, 5, 10ffthf1o 17830 . . . . 5 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))))
12 uptrlem1.y . . . . . . 7 (𝜑 → (𝑀𝑋) = 𝑌)
13 inss1 4186 . . . . . . . . . . 11 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
14 fullfunc 17817 . . . . . . . . . . 11 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1513, 14sstri 3940 . . . . . . . . . 10 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
1615ssbri 5138 . . . . . . . . 9 (𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁𝑀(𝐷 Func 𝐸)𝑁)
174, 16syl 17 . . . . . . . 8 (𝜑𝑀(𝐷 Func 𝐸)𝑁)
18 uptrlem1.k . . . . . . . 8 (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
196, 7, 17, 18, 9cofu1a 49219 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
2012, 19oveq12d 7370 . . . . . 6 (𝜑 → ((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) = (𝑌𝐽(𝐾𝑊)))
2120f1oeq3d 6765 . . . . 5 (𝜑 → ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) ↔ (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊))))
2211, 21mpbid 232 . . . 4 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)))
23 f1of 6768 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2422, 23syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2524ffvelcdmda 7023 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → ((𝑋𝑁(𝐹𝑊))‘𝑔) ∈ (𝑌𝐽(𝐾𝑊)))
26 f1ofo 6775 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
2722, 26syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
28 foelrn 7046 . . 3 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)) ∧ ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
2927, 28sylan 580 . 2 ((𝜑 ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
30 simpl3 1194 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → = ((𝑋𝑁(𝐹𝑊))‘𝑔))
3130eqeq1d 2735 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
32 uptrlem1.d . . . . . . . . 9 = (comp‘𝐷)
33 uptrlem1.e . . . . . . . . 9 = (comp‘𝐸)
3417ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑀(𝐷 Func 𝐸)𝑁)
355ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑋 ∈ (Base‘𝐷))
36 uptrlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
378, 36ffvelcdmd 7024 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ (Base‘𝐷))
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑍) ∈ (Base‘𝐷))
3910ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑊) ∈ (Base‘𝐷))
40 uptrlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
42 uptrlem1.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
436, 42, 2, 7, 36, 9funcf2 17777 . . . . . . . . . . 11 (𝜑 → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4544ffvelcdmda 7023 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑍𝐺𝑊)‘𝑘) ∈ ((𝐹𝑍)𝐼(𝐹𝑊)))
461, 2, 32, 33, 34, 35, 38, 39, 41, 45funcco 17780 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)))
4712ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀𝑋) = 𝑌)
486, 7, 17, 18, 36cofu1a 49219 . . . . . . . . . . . 12 (𝜑 → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
5047, 49opeq12d 4832 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ = ⟨𝑌, (𝐾𝑍)⟩)
5119ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
5250, 51oveq12d 7370 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊))) = (⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊)))
537ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐹(𝐶 Func 𝐷)𝐺)
5418ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
5536ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑍 ∈ (Base‘𝐶))
569ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑊 ∈ (Base‘𝐶))
57 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑘 ∈ (𝑍𝐻𝑊))
586, 53, 34, 54, 55, 56, 42, 57cofu2a 49220 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘)) = ((𝑍𝐿𝑊)‘𝑘))
59 uptrlem1.b . . . . . . . . . 10 (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6059ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6152, 58, 60oveq123d 7373 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6246, 61eqtrd 2768 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6362eqeq2d 2744 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
64 f1of1 6767 . . . . . . . . 9 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6522, 64syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6665ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
67 simplr 768 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑋𝐼(𝐹𝑊)))
6834funcrcl2 49204 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐷 ∈ Cat)
691, 2, 32, 68, 35, 38, 39, 41, 45catcocl 17593 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))
70 f1fveq 7202 . . . . . . 7 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)) ∧ (𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7166, 67, 69, 70syl12anc 836 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7263, 71bitr3d 281 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
73723adantl3 1169 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7431, 73bitrd 279 . . 3 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7574reubidva 3361 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) → (∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7625, 29, 75ralxfrd2 5352 1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  ∃!wreu 3345  cin 3897  cop 4581   class class class wbr 5093  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  compcco 17175   Func cfunc 17763  func ccofu 17765   Full cful 17813   Faith cfth 17814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17576  df-cid 17577  df-func 17767  df-cofu 17769  df-full 17815  df-fth 17816
This theorem is referenced by:  uptrlem2  49336  uptrlem3  49337
  Copyright terms: Public domain W3C validator