Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem1 Structured version   Visualization version   GIF version

Theorem uptrlem1 49196
Description: Lemma for uptr 49199. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptrlem1.h 𝐻 = (Hom ‘𝐶)
uptrlem1.i 𝐼 = (Hom ‘𝐷)
uptrlem1.j 𝐽 = (Hom ‘𝐸)
uptrlem1.d = (comp‘𝐷)
uptrlem1.e = (comp‘𝐸)
uptrlem1.x (𝜑𝑋 ∈ (Base‘𝐷))
uptrlem1.y (𝜑 → (𝑀𝑋) = 𝑌)
uptrlem1.z (𝜑𝑍 ∈ (Base‘𝐶))
uptrlem1.w (𝜑𝑊 ∈ (Base‘𝐶))
uptrlem1.a (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
uptrlem1.b (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
uptrlem1.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptrlem1.m (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
uptrlem1.k (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
Assertion
Ref Expression
uptrlem1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Distinct variable groups:   ,𝑔   ,   𝐴,   𝐵,𝑔   𝑔,𝐹,,𝑘   ,𝐺   𝑔,𝐻,   𝑔,𝐼,,𝑘   𝑔,𝐽,   𝑔,𝐾,   𝑔,𝐿   𝑔,𝑁,,𝑘   𝑔,𝑊,,𝑘   𝑔,𝑋,,𝑘   𝑔,𝑌,   𝑔,𝑍,   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝐴(𝑔,𝑘)   𝐵(,𝑘)   𝐶(𝑔,,𝑘)   𝐷(𝑔,,𝑘)   (𝑔,𝑘)   𝐸(𝑔,,𝑘)   𝐺(𝑔,𝑘)   𝐻(𝑘)   𝐽(𝑘)   𝐾(𝑘)   𝐿(,𝑘)   𝑀(𝑔,,𝑘)   𝑌(𝑘)   (,𝑘)   𝑍(𝑘)

Proof of Theorem uptrlem1
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
2 uptrlem1.i . . . . . 6 𝐼 = (Hom ‘𝐷)
3 uptrlem1.j . . . . . 6 𝐽 = (Hom ‘𝐸)
4 uptrlem1.m . . . . . 6 (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
5 uptrlem1.x . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐷))
6 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 uptrlem1.f . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
86, 1, 7funcf1 17791 . . . . . . 7 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
9 uptrlem1.w . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐶))
108, 9ffvelcdmd 7023 . . . . . 6 (𝜑 → (𝐹𝑊) ∈ (Base‘𝐷))
111, 2, 3, 4, 5, 10ffthf1o 17846 . . . . 5 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))))
12 uptrlem1.y . . . . . . 7 (𝜑 → (𝑀𝑋) = 𝑌)
13 inss1 4190 . . . . . . . . . . 11 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
14 fullfunc 17833 . . . . . . . . . . 11 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1513, 14sstri 3947 . . . . . . . . . 10 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
1615ssbri 5140 . . . . . . . . 9 (𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁𝑀(𝐷 Func 𝐸)𝑁)
174, 16syl 17 . . . . . . . 8 (𝜑𝑀(𝐷 Func 𝐸)𝑁)
18 uptrlem1.k . . . . . . . 8 (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
196, 7, 17, 18, 9cofu1a 49080 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
2012, 19oveq12d 7371 . . . . . 6 (𝜑 → ((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) = (𝑌𝐽(𝐾𝑊)))
2120f1oeq3d 6765 . . . . 5 (𝜑 → ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) ↔ (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊))))
2211, 21mpbid 232 . . . 4 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)))
23 f1of 6768 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2422, 23syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2524ffvelcdmda 7022 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → ((𝑋𝑁(𝐹𝑊))‘𝑔) ∈ (𝑌𝐽(𝐾𝑊)))
26 f1ofo 6775 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
2722, 26syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
28 foelrn 7045 . . 3 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)) ∧ ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
2927, 28sylan 580 . 2 ((𝜑 ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
30 simpl3 1194 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → = ((𝑋𝑁(𝐹𝑊))‘𝑔))
3130eqeq1d 2731 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
32 uptrlem1.d . . . . . . . . 9 = (comp‘𝐷)
33 uptrlem1.e . . . . . . . . 9 = (comp‘𝐸)
3417ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑀(𝐷 Func 𝐸)𝑁)
355ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑋 ∈ (Base‘𝐷))
36 uptrlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
378, 36ffvelcdmd 7023 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ (Base‘𝐷))
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑍) ∈ (Base‘𝐷))
3910ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑊) ∈ (Base‘𝐷))
40 uptrlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
42 uptrlem1.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
436, 42, 2, 7, 36, 9funcf2 17793 . . . . . . . . . . 11 (𝜑 → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4544ffvelcdmda 7022 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑍𝐺𝑊)‘𝑘) ∈ ((𝐹𝑍)𝐼(𝐹𝑊)))
461, 2, 32, 33, 34, 35, 38, 39, 41, 45funcco 17796 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)))
4712ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀𝑋) = 𝑌)
486, 7, 17, 18, 36cofu1a 49080 . . . . . . . . . . . 12 (𝜑 → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
5047, 49opeq12d 4835 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ = ⟨𝑌, (𝐾𝑍)⟩)
5119ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
5250, 51oveq12d 7371 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊))) = (⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊)))
537ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐹(𝐶 Func 𝐷)𝐺)
5418ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
5536ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑍 ∈ (Base‘𝐶))
569ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑊 ∈ (Base‘𝐶))
57 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑘 ∈ (𝑍𝐻𝑊))
586, 53, 34, 54, 55, 56, 42, 57cofu2a 49081 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘)) = ((𝑍𝐿𝑊)‘𝑘))
59 uptrlem1.b . . . . . . . . . 10 (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6059ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6152, 58, 60oveq123d 7374 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6246, 61eqtrd 2764 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6362eqeq2d 2740 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
64 f1of1 6767 . . . . . . . . 9 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6522, 64syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6665ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
67 simplr 768 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑋𝐼(𝐹𝑊)))
6834funcrcl2 49065 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐷 ∈ Cat)
691, 2, 32, 68, 35, 38, 39, 41, 45catcocl 17609 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))
70 f1fveq 7203 . . . . . . 7 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)) ∧ (𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7166, 67, 69, 70syl12anc 836 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7263, 71bitr3d 281 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
73723adantl3 1169 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7431, 73bitrd 279 . . 3 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7574reubidva 3361 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) → (∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7625, 29, 75ralxfrd2 5354 1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3343  cin 3904  cop 4585   class class class wbr 5095  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191   Func cfunc 17779  func ccofu 17781   Full cful 17829   Faith cfth 17830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17592  df-cid 17593  df-func 17783  df-cofu 17785  df-full 17831  df-fth 17832
This theorem is referenced by:  uptrlem2  49197  uptrlem3  49198
  Copyright terms: Public domain W3C validator