Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem1 Structured version   Visualization version   GIF version

Theorem uptrlem1 49117
Description: Lemma for uptr 49120. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptrlem1.h 𝐻 = (Hom ‘𝐶)
uptrlem1.i 𝐼 = (Hom ‘𝐷)
uptrlem1.j 𝐽 = (Hom ‘𝐸)
uptrlem1.d = (comp‘𝐷)
uptrlem1.e = (comp‘𝐸)
uptrlem1.x (𝜑𝑋 ∈ (Base‘𝐷))
uptrlem1.y (𝜑 → (𝑀𝑋) = 𝑌)
uptrlem1.z (𝜑𝑍 ∈ (Base‘𝐶))
uptrlem1.w (𝜑𝑊 ∈ (Base‘𝐶))
uptrlem1.a (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
uptrlem1.b (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
uptrlem1.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptrlem1.m (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
uptrlem1.k (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
Assertion
Ref Expression
uptrlem1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Distinct variable groups:   ,𝑔   ,   𝐴,   𝐵,𝑔   𝑔,𝐹,,𝑘   ,𝐺   𝑔,𝐻,   𝑔,𝐼,,𝑘   𝑔,𝐽,   𝑔,𝐾,   𝑔,𝐿   𝑔,𝑁,,𝑘   𝑔,𝑊,,𝑘   𝑔,𝑋,,𝑘   𝑔,𝑌,   𝑔,𝑍,   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝐴(𝑔,𝑘)   𝐵(,𝑘)   𝐶(𝑔,,𝑘)   𝐷(𝑔,,𝑘)   (𝑔,𝑘)   𝐸(𝑔,,𝑘)   𝐺(𝑔,𝑘)   𝐻(𝑘)   𝐽(𝑘)   𝐾(𝑘)   𝐿(,𝑘)   𝑀(𝑔,,𝑘)   𝑌(𝑘)   (,𝑘)   𝑍(𝑘)

Proof of Theorem uptrlem1
StepHypRef Expression
1 eqid 2730 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
2 uptrlem1.i . . . . . 6 𝐼 = (Hom ‘𝐷)
3 uptrlem1.j . . . . . 6 𝐽 = (Hom ‘𝐸)
4 uptrlem1.m . . . . . 6 (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
5 uptrlem1.x . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐷))
6 eqid 2730 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 uptrlem1.f . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
86, 1, 7funcf1 17834 . . . . . . 7 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
9 uptrlem1.w . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐶))
108, 9ffvelcdmd 7064 . . . . . 6 (𝜑 → (𝐹𝑊) ∈ (Base‘𝐷))
111, 2, 3, 4, 5, 10ffthf1o 17889 . . . . 5 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))))
12 uptrlem1.y . . . . . . 7 (𝜑 → (𝑀𝑋) = 𝑌)
13 inss1 4208 . . . . . . . . . . 11 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
14 fullfunc 17876 . . . . . . . . . . 11 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1513, 14sstri 3964 . . . . . . . . . 10 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
1615ssbri 5160 . . . . . . . . 9 (𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁𝑀(𝐷 Func 𝐸)𝑁)
174, 16syl 17 . . . . . . . 8 (𝜑𝑀(𝐷 Func 𝐸)𝑁)
18 uptrlem1.k . . . . . . . 8 (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
196, 7, 17, 18, 9cofu1a 49011 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
2012, 19oveq12d 7412 . . . . . 6 (𝜑 → ((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) = (𝑌𝐽(𝐾𝑊)))
2120f1oeq3d 6804 . . . . 5 (𝜑 → ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) ↔ (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊))))
2211, 21mpbid 232 . . . 4 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)))
23 f1of 6807 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2422, 23syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2524ffvelcdmda 7063 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → ((𝑋𝑁(𝐹𝑊))‘𝑔) ∈ (𝑌𝐽(𝐾𝑊)))
26 f1ofo 6814 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
2722, 26syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
28 foelrn 7086 . . 3 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)) ∧ ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
2927, 28sylan 580 . 2 ((𝜑 ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
30 simpl3 1194 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → = ((𝑋𝑁(𝐹𝑊))‘𝑔))
3130eqeq1d 2732 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
32 uptrlem1.d . . . . . . . . 9 = (comp‘𝐷)
33 uptrlem1.e . . . . . . . . 9 = (comp‘𝐸)
3417ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑀(𝐷 Func 𝐸)𝑁)
355ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑋 ∈ (Base‘𝐷))
36 uptrlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
378, 36ffvelcdmd 7064 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ (Base‘𝐷))
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑍) ∈ (Base‘𝐷))
3910ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑊) ∈ (Base‘𝐷))
40 uptrlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
42 uptrlem1.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
436, 42, 2, 7, 36, 9funcf2 17836 . . . . . . . . . . 11 (𝜑 → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4544ffvelcdmda 7063 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑍𝐺𝑊)‘𝑘) ∈ ((𝐹𝑍)𝐼(𝐹𝑊)))
461, 2, 32, 33, 34, 35, 38, 39, 41, 45funcco 17839 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)))
4712ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀𝑋) = 𝑌)
486, 7, 17, 18, 36cofu1a 49011 . . . . . . . . . . . 12 (𝜑 → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
5047, 49opeq12d 4853 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ = ⟨𝑌, (𝐾𝑍)⟩)
5119ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
5250, 51oveq12d 7412 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊))) = (⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊)))
537ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐹(𝐶 Func 𝐷)𝐺)
5418ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
5536ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑍 ∈ (Base‘𝐶))
569ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑊 ∈ (Base‘𝐶))
57 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑘 ∈ (𝑍𝐻𝑊))
586, 53, 34, 54, 55, 56, 42, 57cofu2a 49012 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘)) = ((𝑍𝐿𝑊)‘𝑘))
59 uptrlem1.b . . . . . . . . . 10 (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6059ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6152, 58, 60oveq123d 7415 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6246, 61eqtrd 2765 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6362eqeq2d 2741 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
64 f1of1 6806 . . . . . . . . 9 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6522, 64syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6665ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
67 simplr 768 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑋𝐼(𝐹𝑊)))
6834funcrcl2 48996 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐷 ∈ Cat)
691, 2, 32, 68, 35, 38, 39, 41, 45catcocl 17652 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))
70 f1fveq 7244 . . . . . . 7 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)) ∧ (𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7166, 67, 69, 70syl12anc 836 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7263, 71bitr3d 281 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
73723adantl3 1169 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7431, 73bitrd 279 . . 3 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7574reubidva 3373 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) → (∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7625, 29, 75ralxfrd2 5375 1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3046  wrex 3055  ∃!wreu 3355  cin 3921  cop 4603   class class class wbr 5115  wf 6515  1-1wf1 6516  ontowfo 6517  1-1-ontowf1o 6518  cfv 6519  (class class class)co 7394  Basecbs 17185  Hom chom 17237  compcco 17238   Func cfunc 17822  func ccofu 17824   Full cful 17872   Faith cfth 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-full 17874  df-fth 17875
This theorem is referenced by:  uptrlem2  49118  uptrlem3  49119
  Copyright terms: Public domain W3C validator