Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem1 Structured version   Visualization version   GIF version

Theorem uptrlem1 49241
Description: Lemma for uptr 49244. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptrlem1.h 𝐻 = (Hom ‘𝐶)
uptrlem1.i 𝐼 = (Hom ‘𝐷)
uptrlem1.j 𝐽 = (Hom ‘𝐸)
uptrlem1.d = (comp‘𝐷)
uptrlem1.e = (comp‘𝐸)
uptrlem1.x (𝜑𝑋 ∈ (Base‘𝐷))
uptrlem1.y (𝜑 → (𝑀𝑋) = 𝑌)
uptrlem1.z (𝜑𝑍 ∈ (Base‘𝐶))
uptrlem1.w (𝜑𝑊 ∈ (Base‘𝐶))
uptrlem1.a (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
uptrlem1.b (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
uptrlem1.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptrlem1.m (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
uptrlem1.k (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
Assertion
Ref Expression
uptrlem1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Distinct variable groups:   ,𝑔   ,   𝐴,   𝐵,𝑔   𝑔,𝐹,,𝑘   ,𝐺   𝑔,𝐻,   𝑔,𝐼,,𝑘   𝑔,𝐽,   𝑔,𝐾,   𝑔,𝐿   𝑔,𝑁,,𝑘   𝑔,𝑊,,𝑘   𝑔,𝑋,,𝑘   𝑔,𝑌,   𝑔,𝑍,   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝐴(𝑔,𝑘)   𝐵(,𝑘)   𝐶(𝑔,,𝑘)   𝐷(𝑔,,𝑘)   (𝑔,𝑘)   𝐸(𝑔,,𝑘)   𝐺(𝑔,𝑘)   𝐻(𝑘)   𝐽(𝑘)   𝐾(𝑘)   𝐿(,𝑘)   𝑀(𝑔,,𝑘)   𝑌(𝑘)   (,𝑘)   𝑍(𝑘)

Proof of Theorem uptrlem1
StepHypRef Expression
1 eqid 2731 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
2 uptrlem1.i . . . . . 6 𝐼 = (Hom ‘𝐷)
3 uptrlem1.j . . . . . 6 𝐽 = (Hom ‘𝐸)
4 uptrlem1.m . . . . . 6 (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
5 uptrlem1.x . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐷))
6 eqid 2731 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 uptrlem1.f . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
86, 1, 7funcf1 17770 . . . . . . 7 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
9 uptrlem1.w . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐶))
108, 9ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝐹𝑊) ∈ (Base‘𝐷))
111, 2, 3, 4, 5, 10ffthf1o 17825 . . . . 5 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))))
12 uptrlem1.y . . . . . . 7 (𝜑 → (𝑀𝑋) = 𝑌)
13 inss1 4187 . . . . . . . . . . 11 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
14 fullfunc 17812 . . . . . . . . . . 11 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1513, 14sstri 3944 . . . . . . . . . 10 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
1615ssbri 5136 . . . . . . . . 9 (𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁𝑀(𝐷 Func 𝐸)𝑁)
174, 16syl 17 . . . . . . . 8 (𝜑𝑀(𝐷 Func 𝐸)𝑁)
18 uptrlem1.k . . . . . . . 8 (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
196, 7, 17, 18, 9cofu1a 49125 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
2012, 19oveq12d 7364 . . . . . 6 (𝜑 → ((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) = (𝑌𝐽(𝐾𝑊)))
2120f1oeq3d 6760 . . . . 5 (𝜑 → ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) ↔ (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊))))
2211, 21mpbid 232 . . . 4 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)))
23 f1of 6763 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2422, 23syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2524ffvelcdmda 7017 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → ((𝑋𝑁(𝐹𝑊))‘𝑔) ∈ (𝑌𝐽(𝐾𝑊)))
26 f1ofo 6770 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
2722, 26syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
28 foelrn 7040 . . 3 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)) ∧ ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
2927, 28sylan 580 . 2 ((𝜑 ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
30 simpl3 1194 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → = ((𝑋𝑁(𝐹𝑊))‘𝑔))
3130eqeq1d 2733 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
32 uptrlem1.d . . . . . . . . 9 = (comp‘𝐷)
33 uptrlem1.e . . . . . . . . 9 = (comp‘𝐸)
3417ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑀(𝐷 Func 𝐸)𝑁)
355ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑋 ∈ (Base‘𝐷))
36 uptrlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
378, 36ffvelcdmd 7018 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ (Base‘𝐷))
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑍) ∈ (Base‘𝐷))
3910ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑊) ∈ (Base‘𝐷))
40 uptrlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
42 uptrlem1.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
436, 42, 2, 7, 36, 9funcf2 17772 . . . . . . . . . . 11 (𝜑 → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4544ffvelcdmda 7017 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑍𝐺𝑊)‘𝑘) ∈ ((𝐹𝑍)𝐼(𝐹𝑊)))
461, 2, 32, 33, 34, 35, 38, 39, 41, 45funcco 17775 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)))
4712ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀𝑋) = 𝑌)
486, 7, 17, 18, 36cofu1a 49125 . . . . . . . . . . . 12 (𝜑 → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
5047, 49opeq12d 4833 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ = ⟨𝑌, (𝐾𝑍)⟩)
5119ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
5250, 51oveq12d 7364 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊))) = (⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊)))
537ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐹(𝐶 Func 𝐷)𝐺)
5418ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
5536ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑍 ∈ (Base‘𝐶))
569ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑊 ∈ (Base‘𝐶))
57 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑘 ∈ (𝑍𝐻𝑊))
586, 53, 34, 54, 55, 56, 42, 57cofu2a 49126 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘)) = ((𝑍𝐿𝑊)‘𝑘))
59 uptrlem1.b . . . . . . . . . 10 (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6059ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6152, 58, 60oveq123d 7367 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6246, 61eqtrd 2766 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6362eqeq2d 2742 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
64 f1of1 6762 . . . . . . . . 9 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6522, 64syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6665ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
67 simplr 768 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑋𝐼(𝐹𝑊)))
6834funcrcl2 49110 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐷 ∈ Cat)
691, 2, 32, 68, 35, 38, 39, 41, 45catcocl 17588 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))
70 f1fveq 7196 . . . . . . 7 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)) ∧ (𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7166, 67, 69, 70syl12anc 836 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7263, 71bitr3d 281 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
73723adantl3 1169 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7431, 73bitrd 279 . . 3 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7574reubidva 3360 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) → (∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7625, 29, 75ralxfrd2 5350 1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cin 3901  cop 4582   class class class wbr 5091  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17117  Hom chom 17169  compcco 17170   Func cfunc 17758  func ccofu 17760   Full cful 17808   Faith cfth 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-func 17762  df-cofu 17764  df-full 17810  df-fth 17811
This theorem is referenced by:  uptrlem2  49242  uptrlem3  49243
  Copyright terms: Public domain W3C validator