Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptrlem1 Structured version   Visualization version   GIF version

Theorem uptrlem1 49199
Description: Lemma for uptr 49202. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptrlem1.h 𝐻 = (Hom ‘𝐶)
uptrlem1.i 𝐼 = (Hom ‘𝐷)
uptrlem1.j 𝐽 = (Hom ‘𝐸)
uptrlem1.d = (comp‘𝐷)
uptrlem1.e = (comp‘𝐸)
uptrlem1.x (𝜑𝑋 ∈ (Base‘𝐷))
uptrlem1.y (𝜑 → (𝑀𝑋) = 𝑌)
uptrlem1.z (𝜑𝑍 ∈ (Base‘𝐶))
uptrlem1.w (𝜑𝑊 ∈ (Base‘𝐶))
uptrlem1.a (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
uptrlem1.b (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
uptrlem1.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
uptrlem1.m (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
uptrlem1.k (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
Assertion
Ref Expression
uptrlem1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Distinct variable groups:   ,𝑔   ,   𝐴,   𝐵,𝑔   𝑔,𝐹,,𝑘   ,𝐺   𝑔,𝐻,   𝑔,𝐼,,𝑘   𝑔,𝐽,   𝑔,𝐾,   𝑔,𝐿   𝑔,𝑁,,𝑘   𝑔,𝑊,,𝑘   𝑔,𝑋,,𝑘   𝑔,𝑌,   𝑔,𝑍,   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝐴(𝑔,𝑘)   𝐵(,𝑘)   𝐶(𝑔,,𝑘)   𝐷(𝑔,,𝑘)   (𝑔,𝑘)   𝐸(𝑔,,𝑘)   𝐺(𝑔,𝑘)   𝐻(𝑘)   𝐽(𝑘)   𝐾(𝑘)   𝐿(,𝑘)   𝑀(𝑔,,𝑘)   𝑌(𝑘)   (,𝑘)   𝑍(𝑘)

Proof of Theorem uptrlem1
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
2 uptrlem1.i . . . . . 6 𝐼 = (Hom ‘𝐷)
3 uptrlem1.j . . . . . 6 𝐽 = (Hom ‘𝐸)
4 uptrlem1.m . . . . . 6 (𝜑𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁)
5 uptrlem1.x . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐷))
6 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
7 uptrlem1.f . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
86, 1, 7funcf1 17828 . . . . . . 7 (𝜑𝐹:(Base‘𝐶)⟶(Base‘𝐷))
9 uptrlem1.w . . . . . . 7 (𝜑𝑊 ∈ (Base‘𝐶))
108, 9ffvelcdmd 7057 . . . . . 6 (𝜑 → (𝐹𝑊) ∈ (Base‘𝐷))
111, 2, 3, 4, 5, 10ffthf1o 17883 . . . . 5 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))))
12 uptrlem1.y . . . . . . 7 (𝜑 → (𝑀𝑋) = 𝑌)
13 inss1 4200 . . . . . . . . . . 11 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
14 fullfunc 17870 . . . . . . . . . . 11 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1513, 14sstri 3956 . . . . . . . . . 10 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
1615ssbri 5152 . . . . . . . . 9 (𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁𝑀(𝐷 Func 𝐸)𝑁)
174, 16syl 17 . . . . . . . 8 (𝜑𝑀(𝐷 Func 𝐸)𝑁)
18 uptrlem1.k . . . . . . . 8 (𝜑 → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
196, 7, 17, 18, 9cofu1a 49083 . . . . . . 7 (𝜑 → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
2012, 19oveq12d 7405 . . . . . 6 (𝜑 → ((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) = (𝑌𝐽(𝐾𝑊)))
2120f1oeq3d 6797 . . . . 5 (𝜑 → ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→((𝑀𝑋)𝐽(𝑀‘(𝐹𝑊))) ↔ (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊))))
2211, 21mpbid 232 . . . 4 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)))
23 f1of 6800 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2422, 23syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))⟶(𝑌𝐽(𝐾𝑊)))
2524ffvelcdmda 7056 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → ((𝑋𝑁(𝐹𝑊))‘𝑔) ∈ (𝑌𝐽(𝐾𝑊)))
26 f1ofo 6807 . . . 4 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
2722, 26syl 17 . . 3 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)))
28 foelrn 7079 . . 3 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–onto→(𝑌𝐽(𝐾𝑊)) ∧ ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
2927, 28sylan 580 . 2 ((𝜑 ∈ (𝑌𝐽(𝐾𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹𝑊)) = ((𝑋𝑁(𝐹𝑊))‘𝑔))
30 simpl3 1194 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → = ((𝑋𝑁(𝐹𝑊))‘𝑔))
3130eqeq1d 2731 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
32 uptrlem1.d . . . . . . . . 9 = (comp‘𝐷)
33 uptrlem1.e . . . . . . . . 9 = (comp‘𝐸)
3417ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑀(𝐷 Func 𝐸)𝑁)
355ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑋 ∈ (Base‘𝐷))
36 uptrlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (Base‘𝐶))
378, 36ffvelcdmd 7057 . . . . . . . . . 10 (𝜑 → (𝐹𝑍) ∈ (Base‘𝐷))
3837ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑍) ∈ (Base‘𝐷))
3910ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹𝑊) ∈ (Base‘𝐷))
40 uptrlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
4140ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐴 ∈ (𝑋𝐼(𝐹𝑍)))
42 uptrlem1.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐶)
436, 42, 2, 7, 36, 9funcf2 17830 . . . . . . . . . . 11 (𝜑 → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4443adantr 480 . . . . . . . . . 10 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹𝑍)𝐼(𝐹𝑊)))
4544ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑍𝐺𝑊)‘𝑘) ∈ ((𝐹𝑍)𝐼(𝐹𝑊)))
461, 2, 32, 33, 34, 35, 38, 39, 41, 45funcco 17833 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)))
4712ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀𝑋) = 𝑌)
486, 7, 17, 18, 36cofu1a 49083 . . . . . . . . . . . 12 (𝜑 → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
4948ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑍)) = (𝐾𝑍))
5047, 49opeq12d 4845 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ = ⟨𝑌, (𝐾𝑍)⟩)
5119ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹𝑊)) = (𝐾𝑊))
5250, 51oveq12d 7405 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊))) = (⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊)))
537ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐹(𝐶 Func 𝐷)𝐺)
5418ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (⟨𝑀, 𝑁⟩ ∘func𝐹, 𝐺⟩) = ⟨𝐾, 𝐿⟩)
5536ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑍 ∈ (Base‘𝐶))
569ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑊 ∈ (Base‘𝐶))
57 simpr 484 . . . . . . . . . 10 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑘 ∈ (𝑍𝐻𝑊))
586, 53, 34, 54, 55, 56, 42, 57cofu2a 49084 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘)) = ((𝑍𝐿𝑊)‘𝑘))
59 uptrlem1.b . . . . . . . . . 10 (𝜑 → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6059ad2antrr 726 . . . . . . . . 9 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑍))‘𝐴) = 𝐵)
6152, 58, 60oveq123d 7408 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((((𝐹𝑍)𝑁(𝐹𝑊))‘((𝑍𝐺𝑊)‘𝑘))(⟨(𝑀𝑋), (𝑀‘(𝐹𝑍))⟩ (𝑀‘(𝐹𝑊)))((𝑋𝑁(𝐹𝑍))‘𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6246, 61eqtrd 2764 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵))
6362eqeq2d 2740 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ ((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵)))
64 f1of1 6799 . . . . . . . . 9 ((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1-onto→(𝑌𝐽(𝐾𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6522, 64syl 17 . . . . . . . 8 (𝜑 → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
6665ad2antrr 726 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)))
67 simplr 768 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑋𝐼(𝐹𝑊)))
6834funcrcl2 49068 . . . . . . . 8 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐷 ∈ Cat)
691, 2, 32, 68, 35, 38, 39, 41, 45catcocl 17646 . . . . . . 7 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))
70 f1fveq 7237 . . . . . . 7 (((𝑋𝑁(𝐹𝑊)):(𝑋𝐼(𝐹𝑊))–1-1→(𝑌𝐽(𝐾𝑊)) ∧ (𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴) ∈ (𝑋𝐼(𝐹𝑊)))) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7166, 67, 69, 70syl12anc 836 . . . . . 6 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = ((𝑋𝑁(𝐹𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7263, 71bitr3d 281 . . . . 5 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
73723adantl3 1169 . . . 4 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7431, 73bitrd 279 . . 3 (((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ( = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7574reubidva 3370 . 2 ((𝜑𝑔 ∈ (𝑋𝐼(𝐹𝑊)) ∧ = ((𝑋𝑁(𝐹𝑊))‘𝑔)) → (∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
7625, 29, 75ralxfrd2 5367 1 (𝜑 → (∀ ∈ (𝑌𝐽(𝐾𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊) = (((𝑍𝐿𝑊)‘𝑘)(⟨𝑌, (𝐾𝑍)⟩ (𝐾𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(⟨𝑋, (𝐹𝑍)⟩ (𝐹𝑊))𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3352  cin 3913  cop 4595   class class class wbr 5107  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816  func ccofu 17818   Full cful 17866   Faith cfth 17867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-full 17868  df-fth 17869
This theorem is referenced by:  uptrlem2  49200  uptrlem3  49201
  Copyright terms: Public domain W3C validator