Proof of Theorem uptrlem1
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2730 |
. . . . . 6
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 2 | | uptrlem1.i |
. . . . . 6
⊢ 𝐼 = (Hom ‘𝐷) |
| 3 | | uptrlem1.j |
. . . . . 6
⊢ 𝐽 = (Hom ‘𝐸) |
| 4 | | uptrlem1.m |
. . . . . 6
⊢ (𝜑 → 𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁) |
| 5 | | uptrlem1.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 6 | | eqid 2730 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 7 | | uptrlem1.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 8 | 6, 1, 7 | funcf1 17834 |
. . . . . . 7
⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 9 | | uptrlem1.w |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐶)) |
| 10 | 8, 9 | ffvelcdmd 7064 |
. . . . . 6
⊢ (𝜑 → (𝐹‘𝑊) ∈ (Base‘𝐷)) |
| 11 | 1, 2, 3, 4, 5, 10 | ffthf1o 17889 |
. . . . 5
⊢ (𝜑 → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1-onto→((𝑀‘𝑋)𝐽(𝑀‘(𝐹‘𝑊)))) |
| 12 | | uptrlem1.y |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝑋) = 𝑌) |
| 13 | | inss1 4208 |
. . . . . . . . . . 11
⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸) |
| 14 | | fullfunc 17876 |
. . . . . . . . . . 11
⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) |
| 15 | 13, 14 | sstri 3964 |
. . . . . . . . . 10
⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸) |
| 16 | 15 | ssbri 5160 |
. . . . . . . . 9
⊢ (𝑀((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑁 → 𝑀(𝐷 Func 𝐸)𝑁) |
| 17 | 4, 16 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀(𝐷 Func 𝐸)𝑁) |
| 18 | | uptrlem1.k |
. . . . . . . 8
⊢ (𝜑 → (〈𝑀, 𝑁〉 ∘func
〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 19 | 6, 7, 17, 18, 9 | cofu1a 49011 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘(𝐹‘𝑊)) = (𝐾‘𝑊)) |
| 20 | 12, 19 | oveq12d 7412 |
. . . . . 6
⊢ (𝜑 → ((𝑀‘𝑋)𝐽(𝑀‘(𝐹‘𝑊))) = (𝑌𝐽(𝐾‘𝑊))) |
| 21 | 20 | f1oeq3d 6804 |
. . . . 5
⊢ (𝜑 → ((𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1-onto→((𝑀‘𝑋)𝐽(𝑀‘(𝐹‘𝑊))) ↔ (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1-onto→(𝑌𝐽(𝐾‘𝑊)))) |
| 22 | 11, 21 | mpbid 232 |
. . . 4
⊢ (𝜑 → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1-onto→(𝑌𝐽(𝐾‘𝑊))) |
| 23 | | f1of 6807 |
. . . 4
⊢ ((𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1-onto→(𝑌𝐽(𝐾‘𝑊)) → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))⟶(𝑌𝐽(𝐾‘𝑊))) |
| 24 | 22, 23 | syl 17 |
. . 3
⊢ (𝜑 → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))⟶(𝑌𝐽(𝐾‘𝑊))) |
| 25 | 24 | ffvelcdmda 7063 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) → ((𝑋𝑁(𝐹‘𝑊))‘𝑔) ∈ (𝑌𝐽(𝐾‘𝑊))) |
| 26 | | f1ofo 6814 |
. . . 4
⊢ ((𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1-onto→(𝑌𝐽(𝐾‘𝑊)) → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–onto→(𝑌𝐽(𝐾‘𝑊))) |
| 27 | 22, 26 | syl 17 |
. . 3
⊢ (𝜑 → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–onto→(𝑌𝐽(𝐾‘𝑊))) |
| 28 | | foelrn 7086 |
. . 3
⊢ (((𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–onto→(𝑌𝐽(𝐾‘𝑊)) ∧ ℎ ∈ (𝑌𝐽(𝐾‘𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) |
| 29 | 27, 28 | sylan 580 |
. 2
⊢ ((𝜑 ∧ ℎ ∈ (𝑌𝐽(𝐾‘𝑊))) → ∃𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) |
| 30 | | simpl3 1194 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊)) ∧ ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) |
| 31 | 30 | eqeq1d 2732 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊)) ∧ ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (ℎ = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ ((𝑋𝑁(𝐹‘𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵))) |
| 32 | | uptrlem1.d |
. . . . . . . . 9
⊢ ∙ =
(comp‘𝐷) |
| 33 | | uptrlem1.e |
. . . . . . . . 9
⊢ ⚬ =
(comp‘𝐸) |
| 34 | 17 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑀(𝐷 Func 𝐸)𝑁) |
| 35 | 5 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑋 ∈ (Base‘𝐷)) |
| 36 | | uptrlem1.z |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 37 | 8, 36 | ffvelcdmd 7064 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑍) ∈ (Base‘𝐷)) |
| 38 | 37 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹‘𝑍) ∈ (Base‘𝐷)) |
| 39 | 10 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝐹‘𝑊) ∈ (Base‘𝐷)) |
| 40 | | uptrlem1.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ (𝑋𝐼(𝐹‘𝑍))) |
| 41 | 40 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐴 ∈ (𝑋𝐼(𝐹‘𝑍))) |
| 42 | | uptrlem1.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (Hom ‘𝐶) |
| 43 | 6, 42, 2, 7, 36, 9 | funcf2 17836 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹‘𝑍)𝐼(𝐹‘𝑊))) |
| 44 | 43 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) → (𝑍𝐺𝑊):(𝑍𝐻𝑊)⟶((𝐹‘𝑍)𝐼(𝐹‘𝑊))) |
| 45 | 44 | ffvelcdmda 7063 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑍𝐺𝑊)‘𝑘) ∈ ((𝐹‘𝑍)𝐼(𝐹‘𝑊))) |
| 46 | 1, 2, 32, 33, 34, 35, 38, 39, 41, 45 | funcco 17839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹‘𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴)) = ((((𝐹‘𝑍)𝑁(𝐹‘𝑊))‘((𝑍𝐺𝑊)‘𝑘))(〈(𝑀‘𝑋), (𝑀‘(𝐹‘𝑍))〉 ⚬ (𝑀‘(𝐹‘𝑊)))((𝑋𝑁(𝐹‘𝑍))‘𝐴))) |
| 47 | 12 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘𝑋) = 𝑌) |
| 48 | 6, 7, 17, 18, 36 | cofu1a 49011 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀‘(𝐹‘𝑍)) = (𝐾‘𝑍)) |
| 49 | 48 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹‘𝑍)) = (𝐾‘𝑍)) |
| 50 | 47, 49 | opeq12d 4853 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 〈(𝑀‘𝑋), (𝑀‘(𝐹‘𝑍))〉 = 〈𝑌, (𝐾‘𝑍)〉) |
| 51 | 19 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑀‘(𝐹‘𝑊)) = (𝐾‘𝑊)) |
| 52 | 50, 51 | oveq12d 7412 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (〈(𝑀‘𝑋), (𝑀‘(𝐹‘𝑍))〉 ⚬ (𝑀‘(𝐹‘𝑊))) = (〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))) |
| 53 | 7 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 54 | 18 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (〈𝑀, 𝑁〉 ∘func
〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 55 | 36 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑍 ∈ (Base‘𝐶)) |
| 56 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑊 ∈ (Base‘𝐶)) |
| 57 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑘 ∈ (𝑍𝐻𝑊)) |
| 58 | 6, 53, 34, 54, 55, 56, 42, 57 | cofu2a 49012 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝐹‘𝑍)𝑁(𝐹‘𝑊))‘((𝑍𝐺𝑊)‘𝑘)) = ((𝑍𝐿𝑊)‘𝑘)) |
| 59 | | uptrlem1.b |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑋𝑁(𝐹‘𝑍))‘𝐴) = 𝐵) |
| 60 | 59 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹‘𝑍))‘𝐴) = 𝐵) |
| 61 | 52, 58, 60 | oveq123d 7415 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((((𝐹‘𝑍)𝑁(𝐹‘𝑊))‘((𝑍𝐺𝑊)‘𝑘))(〈(𝑀‘𝑋), (𝑀‘(𝐹‘𝑍))〉 ⚬ (𝑀‘(𝐹‘𝑊)))((𝑋𝑁(𝐹‘𝑍))‘𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵)) |
| 62 | 46, 61 | eqtrd 2765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → ((𝑋𝑁(𝐹‘𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴)) = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵)) |
| 63 | 62 | eqeq2d 2741 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹‘𝑊))‘𝑔) = ((𝑋𝑁(𝐹‘𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴)) ↔ ((𝑋𝑁(𝐹‘𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵))) |
| 64 | | f1of1 6806 |
. . . . . . . . 9
⊢ ((𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1-onto→(𝑌𝐽(𝐾‘𝑊)) → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1→(𝑌𝐽(𝐾‘𝑊))) |
| 65 | 22, 64 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1→(𝑌𝐽(𝐾‘𝑊))) |
| 66 | 65 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1→(𝑌𝐽(𝐾‘𝑊))) |
| 67 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) |
| 68 | 34 | funcrcl2 48996 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → 𝐷 ∈ Cat) |
| 69 | 1, 2, 32, 68, 35, 38, 39, 41, 45 | catcocl 17652 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴) ∈ (𝑋𝐼(𝐹‘𝑊))) |
| 70 | | f1fveq 7244 |
. . . . . . 7
⊢ (((𝑋𝑁(𝐹‘𝑊)):(𝑋𝐼(𝐹‘𝑊))–1-1→(𝑌𝐽(𝐾‘𝑊)) ∧ (𝑔 ∈ (𝑋𝐼(𝐹‘𝑊)) ∧ (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴) ∈ (𝑋𝐼(𝐹‘𝑊)))) → (((𝑋𝑁(𝐹‘𝑊))‘𝑔) = ((𝑋𝑁(𝐹‘𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) |
| 71 | 66, 67, 69, 70 | syl12anc 836 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹‘𝑊))‘𝑔) = ((𝑋𝑁(𝐹‘𝑊))‘(((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴)) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) |
| 72 | 63, 71 | bitr3d 281 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹‘𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) |
| 73 | 72 | 3adantl3 1169 |
. . . 4
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊)) ∧ ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (((𝑋𝑁(𝐹‘𝑊))‘𝑔) = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) |
| 74 | 31, 73 | bitrd 279 |
. . 3
⊢ (((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊)) ∧ ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) ∧ 𝑘 ∈ (𝑍𝐻𝑊)) → (ℎ = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ 𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) |
| 75 | 74 | reubidva 3373 |
. 2
⊢ ((𝜑 ∧ 𝑔 ∈ (𝑋𝐼(𝐹‘𝑊)) ∧ ℎ = ((𝑋𝑁(𝐹‘𝑊))‘𝑔)) → (∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ ∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) |
| 76 | 25, 29, 75 | ralxfrd2 5375 |
1
⊢ (𝜑 → (∀ℎ ∈ (𝑌𝐽(𝐾‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍𝐿𝑊)‘𝑘)(〈𝑌, (𝐾‘𝑍)〉 ⚬ (𝐾‘𝑊))𝐵) ↔ ∀𝑔 ∈ (𝑋𝐼(𝐹‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍𝐺𝑊)‘𝑘)(〈𝑋, (𝐹‘𝑍)〉 ∙ (𝐹‘𝑊))𝐴))) |