MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqval Structured version   Visualization version   GIF version

Theorem homfeqval 17742
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homfeqval.b 𝐵 = (Base‘𝐶)
homfeqval.h 𝐻 = (Hom ‘𝐶)
homfeqval.j 𝐽 = (Hom ‘𝐷)
homfeqval.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
homfeqval.x (𝜑𝑋𝐵)
homfeqval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfeqval (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))

Proof of Theorem homfeqval
StepHypRef Expression
1 homfeqval.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21oveqd 7448 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋(Homf𝐷)𝑌))
3 eqid 2735 . . 3 (Homf𝐶) = (Homf𝐶)
4 homfeqval.b . . 3 𝐵 = (Base‘𝐶)
5 homfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
6 homfeqval.x . . 3 (𝜑𝑋𝐵)
7 homfeqval.y . . 3 (𝜑𝑌𝐵)
83, 4, 5, 6, 7homfval 17737 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
9 eqid 2735 . . 3 (Homf𝐷) = (Homf𝐷)
10 eqid 2735 . . 3 (Base‘𝐷) = (Base‘𝐷)
11 homfeqval.j . . 3 𝐽 = (Hom ‘𝐷)
121homfeqbas 17741 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
134, 12eqtrid 2787 . . . 4 (𝜑𝐵 = (Base‘𝐷))
146, 13eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
157, 13eleqtrd 2841 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
169, 10, 11, 14, 15homfval 17737 . 2 (𝜑 → (𝑋(Homf𝐷)𝑌) = (𝑋𝐽𝑌))
172, 8, 163eqtr3d 2783 1 (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  Hom chom 17309  Homf chomf 17711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-homf 17715
This theorem is referenced by:  comfeq  17751  comfeqval  17753  catpropd  17754  cidpropd  17755  monpropd  17785  funcpropd  17954  fullpropd  17974  natpropd  18033  xpcpropd  18265  curfpropd  18290  hofpropd  18324
  Copyright terms: Public domain W3C validator