| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homfeqval | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| homfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
| homfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| homfeqval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| homfeqval.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| homfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| homfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| homfeqval | ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeqval.1 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
| 2 | 1 | oveqd 7407 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋(Homf ‘𝐷)𝑌)) |
| 3 | eqid 2730 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | homfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | homfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | homfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | homfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 3, 4, 5, 6, 7 | homfval 17660 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
| 9 | eqid 2730 | . . 3 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
| 10 | eqid 2730 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 11 | homfeqval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 12 | 1 | homfeqbas 17664 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
| 13 | 4, 12 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| 14 | 6, 13 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 15 | 7, 13 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
| 16 | 9, 10, 11, 14, 15 | homfval 17660 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐷)𝑌) = (𝑋𝐽𝑌)) |
| 17 | 2, 8, 16 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 Homf chomf 17634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-homf 17638 |
| This theorem is referenced by: comfeq 17674 comfeqval 17676 catpropd 17677 cidpropd 17678 monpropd 17706 funcpropd 17871 fullpropd 17891 natpropd 17948 xpcpropd 18176 curfpropd 18201 hofpropd 18235 sectpropdlem 49029 idfu2nda 49096 fthcomf 49150 uppropd 49174 oppcthinco 49432 thincpropd 49435 |
| Copyright terms: Public domain | W3C validator |