MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqval Structured version   Visualization version   GIF version

Theorem homfeqval 17646
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homfeqval.b 𝐵 = (Base‘𝐶)
homfeqval.h 𝐻 = (Hom ‘𝐶)
homfeqval.j 𝐽 = (Hom ‘𝐷)
homfeqval.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
homfeqval.x (𝜑𝑋𝐵)
homfeqval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfeqval (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))

Proof of Theorem homfeqval
StepHypRef Expression
1 homfeqval.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21oveqd 7429 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋(Homf𝐷)𝑌))
3 eqid 2731 . . 3 (Homf𝐶) = (Homf𝐶)
4 homfeqval.b . . 3 𝐵 = (Base‘𝐶)
5 homfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
6 homfeqval.x . . 3 (𝜑𝑋𝐵)
7 homfeqval.y . . 3 (𝜑𝑌𝐵)
83, 4, 5, 6, 7homfval 17641 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
9 eqid 2731 . . 3 (Homf𝐷) = (Homf𝐷)
10 eqid 2731 . . 3 (Base‘𝐷) = (Base‘𝐷)
11 homfeqval.j . . 3 𝐽 = (Hom ‘𝐷)
121homfeqbas 17645 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
134, 12eqtrid 2783 . . . 4 (𝜑𝐵 = (Base‘𝐷))
146, 13eleqtrd 2834 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
157, 13eleqtrd 2834 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
169, 10, 11, 14, 15homfval 17641 . 2 (𝜑 → (𝑋(Homf𝐷)𝑌) = (𝑋𝐽𝑌))
172, 8, 163eqtr3d 2779 1 (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  Basecbs 17149  Hom chom 17213  Homf chomf 17615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-homf 17619
This theorem is referenced by:  comfeq  17655  comfeqval  17657  catpropd  17658  cidpropd  17659  monpropd  17689  funcpropd  17856  fullpropd  17876  natpropd  17934  xpcpropd  18166  curfpropd  18191  hofpropd  18225
  Copyright terms: Public domain W3C validator