MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqval Structured version   Visualization version   GIF version

Theorem homfeqval 17406
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homfeqval.b 𝐵 = (Base‘𝐶)
homfeqval.h 𝐻 = (Hom ‘𝐶)
homfeqval.j 𝐽 = (Hom ‘𝐷)
homfeqval.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
homfeqval.x (𝜑𝑋𝐵)
homfeqval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfeqval (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))

Proof of Theorem homfeqval
StepHypRef Expression
1 homfeqval.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21oveqd 7292 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋(Homf𝐷)𝑌))
3 eqid 2738 . . 3 (Homf𝐶) = (Homf𝐶)
4 homfeqval.b . . 3 𝐵 = (Base‘𝐶)
5 homfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
6 homfeqval.x . . 3 (𝜑𝑋𝐵)
7 homfeqval.y . . 3 (𝜑𝑌𝐵)
83, 4, 5, 6, 7homfval 17401 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
9 eqid 2738 . . 3 (Homf𝐷) = (Homf𝐷)
10 eqid 2738 . . 3 (Base‘𝐷) = (Base‘𝐷)
11 homfeqval.j . . 3 𝐽 = (Hom ‘𝐷)
121homfeqbas 17405 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
134, 12eqtrid 2790 . . . 4 (𝜑𝐵 = (Base‘𝐷))
146, 13eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
157, 13eleqtrd 2841 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
169, 10, 11, 14, 15homfval 17401 . 2 (𝜑 → (𝑋(Homf𝐷)𝑌) = (𝑋𝐽𝑌))
172, 8, 163eqtr3d 2786 1 (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Homf chomf 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-homf 17379
This theorem is referenced by:  comfeq  17415  comfeqval  17417  catpropd  17418  cidpropd  17419  monpropd  17449  funcpropd  17616  fullpropd  17636  natpropd  17694  xpcpropd  17926  curfpropd  17951  hofpropd  17985
  Copyright terms: Public domain W3C validator