MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homfeqval Structured version   Visualization version   GIF version

Theorem homfeqval 17323
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
homfeqval.b 𝐵 = (Base‘𝐶)
homfeqval.h 𝐻 = (Hom ‘𝐶)
homfeqval.j 𝐽 = (Hom ‘𝐷)
homfeqval.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
homfeqval.x (𝜑𝑋𝐵)
homfeqval.y (𝜑𝑌𝐵)
Assertion
Ref Expression
homfeqval (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))

Proof of Theorem homfeqval
StepHypRef Expression
1 homfeqval.1 . . 3 (𝜑 → (Homf𝐶) = (Homf𝐷))
21oveqd 7272 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋(Homf𝐷)𝑌))
3 eqid 2738 . . 3 (Homf𝐶) = (Homf𝐶)
4 homfeqval.b . . 3 𝐵 = (Base‘𝐶)
5 homfeqval.h . . 3 𝐻 = (Hom ‘𝐶)
6 homfeqval.x . . 3 (𝜑𝑋𝐵)
7 homfeqval.y . . 3 (𝜑𝑌𝐵)
83, 4, 5, 6, 7homfval 17318 . 2 (𝜑 → (𝑋(Homf𝐶)𝑌) = (𝑋𝐻𝑌))
9 eqid 2738 . . 3 (Homf𝐷) = (Homf𝐷)
10 eqid 2738 . . 3 (Base‘𝐷) = (Base‘𝐷)
11 homfeqval.j . . 3 𝐽 = (Hom ‘𝐷)
121homfeqbas 17322 . . . . 5 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
134, 12eqtrid 2790 . . . 4 (𝜑𝐵 = (Base‘𝐷))
146, 13eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘𝐷))
157, 13eleqtrd 2841 . . 3 (𝜑𝑌 ∈ (Base‘𝐷))
169, 10, 11, 14, 15homfval 17318 . 2 (𝜑 → (𝑋(Homf𝐷)𝑌) = (𝑋𝐽𝑌))
172, 8, 163eqtr3d 2786 1 (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  Hom chom 16899  Homf chomf 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-homf 17296
This theorem is referenced by:  comfeq  17332  comfeqval  17334  catpropd  17335  cidpropd  17336  monpropd  17366  funcpropd  17532  fullpropd  17552  natpropd  17610  xpcpropd  17842  curfpropd  17867  hofpropd  17901
  Copyright terms: Public domain W3C validator