![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homfeqval | Structured version Visualization version GIF version |
Description: Value of the functionalized Hom-set operation. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
homfeqval.b | ⊢ 𝐵 = (Base‘𝐶) |
homfeqval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
homfeqval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
homfeqval.1 | ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
homfeqval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
homfeqval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
homfeqval | ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homfeqval.1 | . . 3 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) | |
2 | 1 | oveqd 7429 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋(Homf ‘𝐷)𝑌)) |
3 | eqid 2731 | . . 3 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | homfeqval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
5 | homfeqval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | homfeqval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | homfeqval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
8 | 3, 4, 5, 6, 7 | homfval 17641 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
9 | eqid 2731 | . . 3 ⊢ (Homf ‘𝐷) = (Homf ‘𝐷) | |
10 | eqid 2731 | . . 3 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
11 | homfeqval.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
12 | 1 | homfeqbas 17645 | . . . . 5 ⊢ (𝜑 → (Base‘𝐶) = (Base‘𝐷)) |
13 | 4, 12 | eqtrid 2783 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
14 | 6, 13 | eleqtrd 2834 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
15 | 7, 13 | eleqtrd 2834 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐷)) |
16 | 9, 10, 11, 14, 15 | homfval 17641 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐷)𝑌) = (𝑋𝐽𝑌)) |
17 | 2, 8, 16 | 3eqtr3d 2779 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋𝐽𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 Hom chom 17213 Homf chomf 17615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-homf 17619 |
This theorem is referenced by: comfeq 17655 comfeqval 17657 catpropd 17658 cidpropd 17659 monpropd 17689 funcpropd 17856 fullpropd 17876 natpropd 17934 xpcpropd 18166 curfpropd 18191 hofpropd 18225 |
Copyright terms: Public domain | W3C validator |