![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssnle | Structured version Visualization version GIF version |
Description: Equivalent expressions for "not less than". (chnlei 31514 analog.) (Contributed by NM, 10-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lssnle.p | ⊢ ⊕ = (LSSum‘𝐺) |
lssnle.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lssnle.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
Ref | Expression |
---|---|
lssnle | ⊢ (𝜑 → (¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssnle.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
2 | lssnle.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
3 | lssnle.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐺) | |
4 | 3 | lsmss2b 19701 | . . . . 5 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) |
5 | 1, 2, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) |
6 | eqcom 2742 | . . . 4 ⊢ ((𝑇 ⊕ 𝑈) = 𝑇 ↔ 𝑇 = (𝑇 ⊕ 𝑈)) | |
7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑈 ⊆ 𝑇 ↔ 𝑇 = (𝑇 ⊕ 𝑈))) |
8 | 7 | necon3bbid 2976 | . 2 ⊢ (𝜑 → (¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ≠ (𝑇 ⊕ 𝑈))) |
9 | 3 | lsmub1 19690 | . . . 4 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
10 | 1, 2, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
11 | df-pss 3983 | . . . 4 ⊢ (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ⊆ (𝑇 ⊕ 𝑈) ∧ 𝑇 ≠ (𝑇 ⊕ 𝑈))) | |
12 | 11 | baib 535 | . . 3 ⊢ (𝑇 ⊆ (𝑇 ⊕ 𝑈) → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ 𝑇 ≠ (𝑇 ⊕ 𝑈))) |
13 | 10, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ 𝑇 ≠ (𝑇 ⊕ 𝑈))) |
14 | 8, 13 | bitr4d 282 | 1 ⊢ (𝜑 → (¬ 𝑈 ⊆ 𝑇 ↔ 𝑇 ⊊ (𝑇 ⊕ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 ⊊ wpss 3964 ‘cfv 6563 (class class class)co 7431 SubGrpcsubg 19151 LSSumclsm 19667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-subg 19154 df-lsm 19669 |
This theorem is referenced by: lrelat 38996 lsmcv2 39011 lcv1 39023 lcv2 39024 |
Copyright terms: Public domain | W3C validator |