Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem1 Structured version   Visualization version   GIF version

Theorem lcvexchlem1 35109
 Description: Lemma for lcvexch 35114. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvexchlem1 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))

Proof of Theorem lcvexchlem1
StepHypRef Expression
1 lcvexch.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lcvexch.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
32lsssssubg 19317 . . . . . . 7 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . . . 6 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
5 lcvexch.t . . . . . 6 (𝜑𝑇𝑆)
64, 5sseldd 3828 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
7 lcvexch.u . . . . . 6 (𝜑𝑈𝑆)
84, 7sseldd 3828 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
109lsmub1 18422 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑇 𝑈))
116, 8, 10syl2anc 581 . . . 4 (𝜑𝑇 ⊆ (𝑇 𝑈))
12 inss2 4058 . . . . 5 (𝑇𝑈) ⊆ 𝑈
1312a1i 11 . . . 4 (𝜑 → (𝑇𝑈) ⊆ 𝑈)
1411, 132thd 257 . . 3 (𝜑 → (𝑇 ⊆ (𝑇 𝑈) ↔ (𝑇𝑈) ⊆ 𝑈))
15 sseqin2 4044 . . . . 5 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
169lsmss2b 18433 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑈𝑇 ↔ (𝑇 𝑈) = 𝑇))
176, 8, 16syl2anc 581 . . . . . 6 (𝜑 → (𝑈𝑇 ↔ (𝑇 𝑈) = 𝑇))
18 eqcom 2832 . . . . . 6 ((𝑇 𝑈) = 𝑇𝑇 = (𝑇 𝑈))
1917, 18syl6bb 279 . . . . 5 (𝜑 → (𝑈𝑇𝑇 = (𝑇 𝑈)))
2015, 19syl5rbbr 278 . . . 4 (𝜑 → (𝑇 = (𝑇 𝑈) ↔ (𝑇𝑈) = 𝑈))
2120necon3bid 3043 . . 3 (𝜑 → (𝑇 ≠ (𝑇 𝑈) ↔ (𝑇𝑈) ≠ 𝑈))
2214, 21anbi12d 626 . 2 (𝜑 → ((𝑇 ⊆ (𝑇 𝑈) ∧ 𝑇 ≠ (𝑇 𝑈)) ↔ ((𝑇𝑈) ⊆ 𝑈 ∧ (𝑇𝑈) ≠ 𝑈)))
23 df-pss 3814 . 2 (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇 ⊆ (𝑇 𝑈) ∧ 𝑇 ≠ (𝑇 𝑈)))
24 df-pss 3814 . 2 ((𝑇𝑈) ⊊ 𝑈 ↔ ((𝑇𝑈) ⊆ 𝑈 ∧ (𝑇𝑈) ≠ 𝑈))
2522, 23, 243bitr4g 306 1 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1658   ∈ wcel 2166   ≠ wne 2999   ∩ cin 3797   ⊆ wss 3798   ⊊ wpss 3799  ‘cfv 6123  (class class class)co 6905  SubGrpcsubg 17939  LSSumclsm 18400  LModclmod 19219  LSubSpclss 19288   ⋖L clcv 35093 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-subg 17942  df-lsm 18402  df-mgp 18844  df-ur 18856  df-ring 18903  df-lmod 19221  df-lss 19289 This theorem is referenced by:  lcvexchlem4  35112  lcvexchlem5  35113
 Copyright terms: Public domain W3C validator