| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvexchlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcvexch 39057. (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lcvexch.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvexch.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcvexch.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lcvexchlem1 | ⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvexch.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lcvexch.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 2 | lsssssubg 20884 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 5 | lcvexch.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3933 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
| 7 | lcvexch.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 4, 7 | sseldd 3933 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | lcvexch.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 10 | 9 | lsmub1 19562 | . . . . 5 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
| 11 | 6, 8, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
| 12 | inss2 4186 | . . . . 5 ⊢ (𝑇 ∩ 𝑈) ⊆ 𝑈 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ 𝑈) |
| 14 | 11, 13 | 2thd 265 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊆ 𝑈)) |
| 15 | 9 | lsmss2b 19573 | . . . . . . 7 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) |
| 16 | 6, 8, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) |
| 17 | eqcom 2737 | . . . . . 6 ⊢ ((𝑇 ⊕ 𝑈) = 𝑇 ↔ 𝑇 = (𝑇 ⊕ 𝑈)) | |
| 18 | 16, 17 | bitrdi 287 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊆ 𝑇 ↔ 𝑇 = (𝑇 ⊕ 𝑈))) |
| 19 | sseqin2 4171 | . . . . 5 ⊢ (𝑈 ⊆ 𝑇 ↔ (𝑇 ∩ 𝑈) = 𝑈) | |
| 20 | 18, 19 | bitr3di 286 | . . . 4 ⊢ (𝜑 → (𝑇 = (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) = 𝑈)) |
| 21 | 20 | necon3bid 2970 | . . 3 ⊢ (𝜑 → (𝑇 ≠ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ≠ 𝑈)) |
| 22 | 14, 21 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑇 ⊆ (𝑇 ⊕ 𝑈) ∧ 𝑇 ≠ (𝑇 ⊕ 𝑈)) ↔ ((𝑇 ∩ 𝑈) ⊆ 𝑈 ∧ (𝑇 ∩ 𝑈) ≠ 𝑈))) |
| 23 | df-pss 3920 | . 2 ⊢ (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ⊆ (𝑇 ⊕ 𝑈) ∧ 𝑇 ≠ (𝑇 ⊕ 𝑈))) | |
| 24 | df-pss 3920 | . 2 ⊢ ((𝑇 ∩ 𝑈) ⊊ 𝑈 ↔ ((𝑇 ∩ 𝑈) ⊆ 𝑈 ∧ (𝑇 ∩ 𝑈) ≠ 𝑈)) | |
| 25 | 22, 23, 24 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∩ cin 3899 ⊆ wss 3900 ⊊ wpss 3901 ‘cfv 6477 (class class class)co 7341 SubGrpcsubg 19025 LSSumclsm 19539 LModclmod 20786 LSubSpclss 20857 ⋖L clcv 39036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-lsm 19541 df-mgp 20052 df-ur 20093 df-ring 20146 df-lmod 20788 df-lss 20858 |
| This theorem is referenced by: lcvexchlem4 39055 lcvexchlem5 39056 |
| Copyright terms: Public domain | W3C validator |