| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvexchlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcvexch 39024. (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvexch.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvexch.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lcvexch.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvexch.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lcvexch.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvexch.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lcvexchlem1 | ⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvexch.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lcvexch.s | . . . . . . . 8 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | 2 | lsssssubg 20870 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (SubGrp‘𝑊)) |
| 5 | lcvexch.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 6 | 4, 5 | sseldd 3955 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝑊)) |
| 7 | lcvexch.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 8 | 4, 7 | sseldd 3955 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | lcvexch.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 10 | 9 | lsmub1 19593 | . . . . 5 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
| 11 | 6, 8, 10 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑇 ⊕ 𝑈)) |
| 12 | inss2 4209 | . . . . 5 ⊢ (𝑇 ∩ 𝑈) ⊆ 𝑈 | |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑇 ∩ 𝑈) ⊆ 𝑈) |
| 14 | 11, 13 | 2thd 265 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊆ 𝑈)) |
| 15 | 9 | lsmss2b 19604 | . . . . . . 7 ⊢ ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) |
| 16 | 6, 8, 15 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊆ 𝑇 ↔ (𝑇 ⊕ 𝑈) = 𝑇)) |
| 17 | eqcom 2737 | . . . . . 6 ⊢ ((𝑇 ⊕ 𝑈) = 𝑇 ↔ 𝑇 = (𝑇 ⊕ 𝑈)) | |
| 18 | 16, 17 | bitrdi 287 | . . . . 5 ⊢ (𝜑 → (𝑈 ⊆ 𝑇 ↔ 𝑇 = (𝑇 ⊕ 𝑈))) |
| 19 | sseqin2 4194 | . . . . 5 ⊢ (𝑈 ⊆ 𝑇 ↔ (𝑇 ∩ 𝑈) = 𝑈) | |
| 20 | 18, 19 | bitr3di 286 | . . . 4 ⊢ (𝜑 → (𝑇 = (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) = 𝑈)) |
| 21 | 20 | necon3bid 2971 | . . 3 ⊢ (𝜑 → (𝑇 ≠ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ≠ 𝑈)) |
| 22 | 14, 21 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑇 ⊆ (𝑇 ⊕ 𝑈) ∧ 𝑇 ≠ (𝑇 ⊕ 𝑈)) ↔ ((𝑇 ∩ 𝑈) ⊆ 𝑈 ∧ (𝑇 ∩ 𝑈) ≠ 𝑈))) |
| 23 | df-pss 3942 | . 2 ⊢ (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ⊆ (𝑇 ⊕ 𝑈) ∧ 𝑇 ≠ (𝑇 ⊕ 𝑈))) | |
| 24 | df-pss 3942 | . 2 ⊢ ((𝑇 ∩ 𝑈) ⊊ 𝑈 ↔ ((𝑇 ∩ 𝑈) ⊆ 𝑈 ∧ (𝑇 ∩ 𝑈) ≠ 𝑈)) | |
| 25 | 22, 23, 24 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝑇 ⊊ (𝑇 ⊕ 𝑈) ↔ (𝑇 ∩ 𝑈) ⊊ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∩ cin 3921 ⊆ wss 3922 ⊊ wpss 3923 ‘cfv 6519 (class class class)co 7394 SubGrpcsubg 19058 LSSumclsm 19570 LModclmod 20772 LSubSpclss 20843 ⋖L clcv 39003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-lsm 19572 df-mgp 20056 df-ur 20097 df-ring 20150 df-lmod 20774 df-lss 20844 |
| This theorem is referenced by: lcvexchlem4 39022 lcvexchlem5 39023 |
| Copyright terms: Public domain | W3C validator |