Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem1 Structured version   Visualization version   GIF version

Theorem lcvexchlem1 34990
Description: Lemma for lcvexch 34995. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvexchlem1 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))

Proof of Theorem lcvexchlem1
StepHypRef Expression
1 lcvexch.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lcvexch.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
32lsssssubg 19230 . . . . . . 7 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . . . 6 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
5 lcvexch.t . . . . . 6 (𝜑𝑇𝑆)
64, 5sseldd 3762 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
7 lcvexch.u . . . . . 6 (𝜑𝑈𝑆)
84, 7sseldd 3762 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
109lsmub1 18335 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑇 𝑈))
116, 8, 10syl2anc 579 . . . 4 (𝜑𝑇 ⊆ (𝑇 𝑈))
12 inss2 3993 . . . . 5 (𝑇𝑈) ⊆ 𝑈
1312a1i 11 . . . 4 (𝜑 → (𝑇𝑈) ⊆ 𝑈)
1411, 132thd 256 . . 3 (𝜑 → (𝑇 ⊆ (𝑇 𝑈) ↔ (𝑇𝑈) ⊆ 𝑈))
15 sseqin2 3979 . . . . 5 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
169lsmss2b 18346 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑈𝑇 ↔ (𝑇 𝑈) = 𝑇))
176, 8, 16syl2anc 579 . . . . . 6 (𝜑 → (𝑈𝑇 ↔ (𝑇 𝑈) = 𝑇))
18 eqcom 2772 . . . . . 6 ((𝑇 𝑈) = 𝑇𝑇 = (𝑇 𝑈))
1917, 18syl6bb 278 . . . . 5 (𝜑 → (𝑈𝑇𝑇 = (𝑇 𝑈)))
2015, 19syl5rbbr 277 . . . 4 (𝜑 → (𝑇 = (𝑇 𝑈) ↔ (𝑇𝑈) = 𝑈))
2120necon3bid 2981 . . 3 (𝜑 → (𝑇 ≠ (𝑇 𝑈) ↔ (𝑇𝑈) ≠ 𝑈))
2214, 21anbi12d 624 . 2 (𝜑 → ((𝑇 ⊆ (𝑇 𝑈) ∧ 𝑇 ≠ (𝑇 𝑈)) ↔ ((𝑇𝑈) ⊆ 𝑈 ∧ (𝑇𝑈) ≠ 𝑈)))
23 df-pss 3748 . 2 (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇 ⊆ (𝑇 𝑈) ∧ 𝑇 ≠ (𝑇 𝑈)))
24 df-pss 3748 . 2 ((𝑇𝑈) ⊊ 𝑈 ↔ ((𝑇𝑈) ⊆ 𝑈 ∧ (𝑇𝑈) ≠ 𝑈))
2522, 23, 243bitr4g 305 1 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  cin 3731  wss 3732  wpss 3733  cfv 6068  (class class class)co 6842  SubGrpcsubg 17852  LSSumclsm 18313  LModclmod 19132  LSubSpclss 19201  L clcv 34974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-subg 17855  df-lsm 18315  df-mgp 18757  df-ur 18769  df-ring 18816  df-lmod 19134  df-lss 19202
This theorem is referenced by:  lcvexchlem4  34993  lcvexchlem5  34994
  Copyright terms: Public domain W3C validator