Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem1 Structured version   Visualization version   GIF version

Theorem lcvexchlem1 39052
Description: Lemma for lcvexch 39057. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s 𝑆 = (LSubSp‘𝑊)
lcvexch.p = (LSSum‘𝑊)
lcvexch.c 𝐶 = ( ⋖L𝑊)
lcvexch.w (𝜑𝑊 ∈ LMod)
lcvexch.t (𝜑𝑇𝑆)
lcvexch.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lcvexchlem1 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))

Proof of Theorem lcvexchlem1
StepHypRef Expression
1 lcvexch.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lcvexch.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
32lsssssubg 20884 . . . . . . 7 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
41, 3syl 17 . . . . . 6 (𝜑𝑆 ⊆ (SubGrp‘𝑊))
5 lcvexch.t . . . . . 6 (𝜑𝑇𝑆)
64, 5sseldd 3933 . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝑊))
7 lcvexch.u . . . . . 6 (𝜑𝑈𝑆)
84, 7sseldd 3933 . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝑊))
9 lcvexch.p . . . . . 6 = (LSSum‘𝑊)
109lsmub1 19562 . . . . 5 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑇 ⊆ (𝑇 𝑈))
116, 8, 10syl2anc 584 . . . 4 (𝜑𝑇 ⊆ (𝑇 𝑈))
12 inss2 4186 . . . . 5 (𝑇𝑈) ⊆ 𝑈
1312a1i 11 . . . 4 (𝜑 → (𝑇𝑈) ⊆ 𝑈)
1411, 132thd 265 . . 3 (𝜑 → (𝑇 ⊆ (𝑇 𝑈) ↔ (𝑇𝑈) ⊆ 𝑈))
159lsmss2b 19573 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑈𝑇 ↔ (𝑇 𝑈) = 𝑇))
166, 8, 15syl2anc 584 . . . . . 6 (𝜑 → (𝑈𝑇 ↔ (𝑇 𝑈) = 𝑇))
17 eqcom 2737 . . . . . 6 ((𝑇 𝑈) = 𝑇𝑇 = (𝑇 𝑈))
1816, 17bitrdi 287 . . . . 5 (𝜑 → (𝑈𝑇𝑇 = (𝑇 𝑈)))
19 sseqin2 4171 . . . . 5 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
2018, 19bitr3di 286 . . . 4 (𝜑 → (𝑇 = (𝑇 𝑈) ↔ (𝑇𝑈) = 𝑈))
2120necon3bid 2970 . . 3 (𝜑 → (𝑇 ≠ (𝑇 𝑈) ↔ (𝑇𝑈) ≠ 𝑈))
2214, 21anbi12d 632 . 2 (𝜑 → ((𝑇 ⊆ (𝑇 𝑈) ∧ 𝑇 ≠ (𝑇 𝑈)) ↔ ((𝑇𝑈) ⊆ 𝑈 ∧ (𝑇𝑈) ≠ 𝑈)))
23 df-pss 3920 . 2 (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇 ⊆ (𝑇 𝑈) ∧ 𝑇 ≠ (𝑇 𝑈)))
24 df-pss 3920 . 2 ((𝑇𝑈) ⊊ 𝑈 ↔ ((𝑇𝑈) ⊆ 𝑈 ∧ (𝑇𝑈) ≠ 𝑈))
2522, 23, 243bitr4g 314 1 (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  cin 3899  wss 3900  wpss 3901  cfv 6477  (class class class)co 7341  SubGrpcsubg 19025  LSSumclsm 19539  LModclmod 20786  LSubSpclss 20857  L clcv 39036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-lsm 19541  df-mgp 20052  df-ur 20093  df-ring 20146  df-lmod 20788  df-lss 20858
This theorem is referenced by:  lcvexchlem4  39055  lcvexchlem5  39056
  Copyright terms: Public domain W3C validator