![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lem4 | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 8892 for detailed description. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lem4 | ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ⊊ (𝐹‘suc 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
2 | inf3lem.2 | . . . . 5 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
3 | inf3lem.3 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | inf3lem.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | 1, 2, 3, 4 | inf3lem1 8885 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴)) |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴))) |
7 | 1, 2, 3, 4 | inf3lem3 8887 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) |
8 | 6, 7 | jcad 505 | . 2 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → ((𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴)))) |
9 | df-pss 3845 | . 2 ⊢ ((𝐹‘𝐴) ⊊ (𝐹‘suc 𝐴) ↔ ((𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) | |
10 | 8, 9 | syl6ibr 244 | 1 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ⊊ (𝐹‘suc 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 {crab 3092 Vcvv 3415 ∩ cin 3828 ⊆ wss 3829 ⊊ wpss 3830 ∅c0 4178 ∪ cuni 4712 ↦ cmpt 5008 ↾ cres 5409 suc csuc 6031 ‘cfv 6188 ωcom 7396 reccrdg 7849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-reg 8851 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 |
This theorem is referenced by: inf3lem5 8889 |
Copyright terms: Public domain | W3C validator |