MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem4 Structured version   Visualization version   GIF version

Theorem inf3lem4 9602
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9606 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ⊊ (𝐹‘suc 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem4
StepHypRef Expression
1 inf3lem.1 . . . . 5 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . . 5 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . . . 5 𝐴 ∈ V
4 inf3lem.4 . . . . 5 𝐵 ∈ V
51, 2, 3, 4inf3lem1 9599 . . . 4 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
65a1i 11 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴)))
71, 2, 3, 4inf3lem3 9601 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
86, 7jcad 512 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → ((𝐹𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹𝐴) ≠ (𝐹‘suc 𝐴))))
9 df-pss 3942 . 2 ((𝐹𝐴) ⊊ (𝐹‘suc 𝐴) ↔ ((𝐹𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
108, 9imbitrrdi 252 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ⊊ (𝐹‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2927  {crab 3411  Vcvv 3455  cin 3921  wss 3922  wpss 3923  c0 4304   cuni 4879  cmpt 5196  cres 5648  suc csuc 6342  cfv 6519  ωcom 7850  reccrdg 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718  ax-reg 9563
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387
This theorem is referenced by:  inf3lem5  9603
  Copyright terms: Public domain W3C validator