Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inf3lem4 | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9323 for detailed description. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lem4 | ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ⊊ (𝐹‘suc 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inf3lem.1 | . . . . 5 ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) | |
2 | inf3lem.2 | . . . . 5 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
3 | inf3lem.3 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | inf3lem.4 | . . . . 5 ⊢ 𝐵 ∈ V | |
5 | 1, 2, 3, 4 | inf3lem1 9316 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴)) |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴))) |
7 | 1, 2, 3, 4 | inf3lem3 9318 | . . 3 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) |
8 | 6, 7 | jcad 512 | . 2 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → ((𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴)))) |
9 | df-pss 3902 | . 2 ⊢ ((𝐹‘𝐴) ⊊ (𝐹‘suc 𝐴) ↔ ((𝐹‘𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) | |
10 | 8, 9 | syl6ibr 251 | 1 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) → (𝐴 ∈ ω → (𝐹‘𝐴) ⊊ (𝐹‘suc 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ⊊ wpss 3884 ∅c0 4253 ∪ cuni 4836 ↦ cmpt 5153 ↾ cres 5582 suc csuc 6253 ‘cfv 6418 ωcom 7687 reccrdg 8211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 |
This theorem is referenced by: inf3lem5 9320 |
Copyright terms: Public domain | W3C validator |