MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem4 Structured version   Visualization version   GIF version

Theorem inf3lem4 9389
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9393 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ⊊ (𝐹‘suc 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem4
StepHypRef Expression
1 inf3lem.1 . . . . 5 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . . 5 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . . . 5 𝐴 ∈ V
4 inf3lem.4 . . . . 5 𝐵 ∈ V
51, 2, 3, 4inf3lem1 9386 . . . 4 (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴))
65a1i 11 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ⊆ (𝐹‘suc 𝐴)))
71, 2, 3, 4inf3lem3 9388 . . 3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
86, 7jcad 513 . 2 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → ((𝐹𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹𝐴) ≠ (𝐹‘suc 𝐴))))
9 df-pss 3906 . 2 ((𝐹𝐴) ⊊ (𝐹‘suc 𝐴) ↔ ((𝐹𝐴) ⊆ (𝐹‘suc 𝐴) ∧ (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
108, 9syl6ibr 251 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ⊊ (𝐹‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cin 3886  wss 3887  wpss 3888  c0 4256   cuni 4839  cmpt 5157  cres 5591  suc csuc 6268  cfv 6433  ωcom 7712  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by:  inf3lem5  9390
  Copyright terms: Public domain W3C validator