Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvprif Structured version   Visualization version   GIF version

Theorem fvprif 16813
 Description: The value of the pair function at an element of 2o. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
fvprif ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))

Proof of Theorem fvprif
StepHypRef Expression
1 fvpr0o 16811 . . . . 5 (𝐴𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
213ad2ant1 1130 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
32adantr 484 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅) = 𝐴)
4 simpr 488 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → 𝐶 = ∅)
54fveq2d 6647 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘∅))
64iftrued 4448 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐴)
73, 5, 63eqtr4d 2866 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = ∅) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
8 fvpr1o 16812 . . . . 5 (𝐵𝑊 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
983ad2ant2 1131 . . . 4 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
109adantr 484 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
11 simpr 488 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → 𝐶 = 1o)
1211fveq2d 6647 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o))
13 1n0 8094 . . . . . 6 1o ≠ ∅
1413neii 3009 . . . . 5 ¬ 1o = ∅
1511eqeq1d 2823 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → (𝐶 = ∅ ↔ 1o = ∅))
1614, 15mtbiri 330 . . . 4 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ¬ 𝐶 = ∅)
1716iffalsed 4451 . . 3 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → if(𝐶 = ∅, 𝐴, 𝐵) = 𝐵)
1810, 12, 173eqtr4d 2866 . 2 (((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) ∧ 𝐶 = 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
19 elpri 4562 . . . 4 (𝐶 ∈ {∅, 1o} → (𝐶 = ∅ ∨ 𝐶 = 1o))
20 df2o3 8092 . . . 4 2o = {∅, 1o}
2119, 20eleq2s 2930 . . 3 (𝐶 ∈ 2o → (𝐶 = ∅ ∨ 𝐶 = 1o))
22213ad2ant3 1132 . 2 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → (𝐶 = ∅ ∨ 𝐶 = 1o))
237, 18, 22mpjaodan 956 1 ((𝐴𝑉𝐵𝑊𝐶 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝐶) = if(𝐶 = ∅, 𝐴, 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∅c0 4266  ifcif 4440  {cpr 4542  ⟨cop 4546  ‘cfv 6328  1oc1o 8070  2oc2o 8071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-res 5540  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fv 6336  df-om 7556  df-1o 8077  df-2o 8078 This theorem is referenced by:  xpsrnbas  16823  xpsaddlem  16825  xpsvsca  16829
 Copyright terms: Public domain W3C validator