| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsfeq | Structured version Visualization version GIF version | ||
| Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsfeq | ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6853 | . . . 4 ⊢ (𝐺‘∅) ∈ V | |
| 2 | fvex 6853 | . . . 4 ⊢ (𝐺‘1o) ∈ V | |
| 3 | fnpr2o 17496 | . . . 4 ⊢ (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) |
| 6 | id 22 | . 2 ⊢ (𝐺 Fn 2o → 𝐺 Fn 2o) | |
| 7 | elpri 4609 | . . . . 5 ⊢ (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o)) | |
| 8 | df2o3 8419 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleq2s 2846 | . . . 4 ⊢ (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o)) |
| 10 | fvpr0o 17498 | . . . . . . 7 ⊢ ((𝐺‘∅) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅)) | |
| 11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅) |
| 12 | fveq2 6840 | . . . . . 6 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅)) | |
| 13 | fveq2 6840 | . . . . . 6 ⊢ (𝑘 = ∅ → (𝐺‘𝑘) = (𝐺‘∅)) | |
| 14 | 11, 12, 13 | 3eqtr4a 2790 | . . . . 5 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 15 | fvpr1o 17499 | . . . . . . 7 ⊢ ((𝐺‘1o) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o)) | |
| 16 | 2, 15 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o) |
| 17 | fveq2 6840 | . . . . . 6 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o)) | |
| 18 | fveq2 6840 | . . . . . 6 ⊢ (𝑘 = 1o → (𝐺‘𝑘) = (𝐺‘1o)) | |
| 19 | 16, 17, 18 | 3eqtr4a 2790 | . . . . 5 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 20 | 14, 19 | jaoi 857 | . . . 4 ⊢ ((𝑘 = ∅ ∨ 𝑘 = 1o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 21 | 9, 20 | syl 17 | . . 3 ⊢ (𝑘 ∈ 2o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 22 | 21 | adantl 481 | . 2 ⊢ ((𝐺 Fn 2o ∧ 𝑘 ∈ 2o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 23 | 5, 6, 22 | eqfnfvd 6988 | 1 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 {cpr 4587 〈cop 4591 Fn wfn 6494 ‘cfv 6499 1oc1o 8404 2oc2o 8405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-om 7823 df-1o 8411 df-2o 8412 |
| This theorem is referenced by: xpsff1o 17506 xpstopnlem2 23674 |
| Copyright terms: Public domain | W3C validator |