Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsfeq | Structured version Visualization version GIF version |
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
xpsfeq | ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . . 4 ⊢ (𝐺‘∅) ∈ V | |
2 | fvex 6769 | . . . 4 ⊢ (𝐺‘1o) ∈ V | |
3 | fnpr2o 17185 | . . . 4 ⊢ (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) | |
4 | 1, 2, 3 | mp2an 688 | . . 3 ⊢ {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) |
6 | id 22 | . 2 ⊢ (𝐺 Fn 2o → 𝐺 Fn 2o) | |
7 | elpri 4580 | . . . . 5 ⊢ (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o)) | |
8 | df2o3 8282 | . . . . 5 ⊢ 2o = {∅, 1o} | |
9 | 7, 8 | eleq2s 2857 | . . . 4 ⊢ (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o)) |
10 | fvpr0o 17187 | . . . . . . 7 ⊢ ((𝐺‘∅) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅)) | |
11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅) |
12 | fveq2 6756 | . . . . . 6 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅)) | |
13 | fveq2 6756 | . . . . . 6 ⊢ (𝑘 = ∅ → (𝐺‘𝑘) = (𝐺‘∅)) | |
14 | 11, 12, 13 | 3eqtr4a 2805 | . . . . 5 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
15 | fvpr1o 17188 | . . . . . . 7 ⊢ ((𝐺‘1o) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o)) | |
16 | 2, 15 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o) |
17 | fveq2 6756 | . . . . . 6 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o)) | |
18 | fveq2 6756 | . . . . . 6 ⊢ (𝑘 = 1o → (𝐺‘𝑘) = (𝐺‘1o)) | |
19 | 16, 17, 18 | 3eqtr4a 2805 | . . . . 5 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
20 | 14, 19 | jaoi 853 | . . . 4 ⊢ ((𝑘 = ∅ ∨ 𝑘 = 1o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
21 | 9, 20 | syl 17 | . . 3 ⊢ (𝑘 ∈ 2o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
22 | 21 | adantl 481 | . 2 ⊢ ((𝐺 Fn 2o ∧ 𝑘 ∈ 2o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
23 | 5, 6, 22 | eqfnfvd 6894 | 1 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {cpr 4560 〈cop 4564 Fn wfn 6413 ‘cfv 6418 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-om 7688 df-1o 8267 df-2o 8268 |
This theorem is referenced by: xpsff1o 17195 xpstopnlem2 22870 |
Copyright terms: Public domain | W3C validator |