MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfeq Structured version   Visualization version   GIF version

Theorem xpsfeq 17526
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
xpsfeq (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)

Proof of Theorem xpsfeq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fvex 6871 . . . 4 (𝐺‘∅) ∈ V
2 fvex 6871 . . . 4 (𝐺‘1o) ∈ V
3 fnpr2o 17520 . . . 4 (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
41, 2, 3mp2an 692 . . 3 {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o
54a1i 11 . 2 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o)
6 id 22 . 2 (𝐺 Fn 2o𝐺 Fn 2o)
7 elpri 4613 . . . . 5 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
8 df2o3 8442 . . . . 5 2o = {∅, 1o}
97, 8eleq2s 2846 . . . 4 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
10 fvpr0o 17522 . . . . . . 7 ((𝐺‘∅) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅))
111, 10ax-mp 5 . . . . . 6 ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅)
12 fveq2 6858 . . . . . 6 (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅))
13 fveq2 6858 . . . . . 6 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
1411, 12, 133eqtr4a 2790 . . . . 5 (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
15 fvpr1o 17523 . . . . . . 7 ((𝐺‘1o) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o))
162, 15ax-mp 5 . . . . . 6 ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o)
17 fveq2 6858 . . . . . 6 (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o))
18 fveq2 6858 . . . . . 6 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
1916, 17, 183eqtr4a 2790 . . . . 5 (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
2014, 19jaoi 857 . . . 4 ((𝑘 = ∅ ∨ 𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
219, 20syl 17 . . 3 (𝑘 ∈ 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
2221adantl 481 . 2 ((𝐺 Fn 2o𝑘 ∈ 2o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺𝑘))
235, 6, 22eqfnfvd 7006 1 (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  {cpr 4591  cop 4595   Fn wfn 6506  cfv 6511  1oc1o 8427  2oc2o 8428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435
This theorem is referenced by:  xpsff1o  17530  xpstopnlem2  23698
  Copyright terms: Public domain W3C validator