![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfeq | Structured version Visualization version GIF version |
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
xpsfeq | ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6510 | . . . 4 ⊢ (𝐺‘∅) ∈ V | |
2 | fvex 6510 | . . . 4 ⊢ (𝐺‘1o) ∈ V | |
3 | fnpr2o 16688 | . . . 4 ⊢ (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) | |
4 | 1, 2, 3 | mp2an 680 | . . 3 ⊢ {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) |
6 | id 22 | . 2 ⊢ (𝐺 Fn 2o → 𝐺 Fn 2o) | |
7 | elpri 4458 | . . . . 5 ⊢ (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o)) | |
8 | df2o3 7918 | . . . . 5 ⊢ 2o = {∅, 1o} | |
9 | 7, 8 | eleq2s 2879 | . . . 4 ⊢ (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o)) |
10 | fvpr0o 16693 | . . . . . . 7 ⊢ ((𝐺‘∅) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅)) | |
11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅) |
12 | fveq2 6497 | . . . . . 6 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅)) | |
13 | fveq2 6497 | . . . . . 6 ⊢ (𝑘 = ∅ → (𝐺‘𝑘) = (𝐺‘∅)) | |
14 | 11, 12, 13 | 3eqtr4a 2835 | . . . . 5 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
15 | fvpr1o 16694 | . . . . . . 7 ⊢ ((𝐺‘1o) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o)) | |
16 | 2, 15 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o) |
17 | fveq2 6497 | . . . . . 6 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o)) | |
18 | fveq2 6497 | . . . . . 6 ⊢ (𝑘 = 1o → (𝐺‘𝑘) = (𝐺‘1o)) | |
19 | 16, 17, 18 | 3eqtr4a 2835 | . . . . 5 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
20 | 14, 19 | jaoi 844 | . . . 4 ⊢ ((𝑘 = ∅ ∨ 𝑘 = 1o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
21 | 9, 20 | syl 17 | . . 3 ⊢ (𝑘 ∈ 2o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
22 | 21 | adantl 474 | . 2 ⊢ ((𝐺 Fn 2o ∧ 𝑘 ∈ 2o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
23 | 5, 6, 22 | eqfnfvd 6629 | 1 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 834 = wceq 1508 ∈ wcel 2051 Vcvv 3410 ∅c0 4173 {cpr 4438 〈cop 4442 Fn wfn 6181 ‘cfv 6186 1oc1o 7897 2oc2o 7898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-fv 6194 df-om 7396 df-1o 7904 df-2o 7905 |
This theorem is referenced by: xpsff1o 16709 |
Copyright terms: Public domain | W3C validator |