![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsfeq | Structured version Visualization version GIF version |
Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
xpsfeq | ⊢ (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6904 | . . . 4 ⊢ (𝐺‘∅) ∈ V | |
2 | fvex 6904 | . . . 4 ⊢ (𝐺‘1o) ∈ V | |
3 | fnpr2o 17510 | . . . 4 ⊢ (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o) | |
4 | 1, 2, 3 | mp2an 689 | . . 3 ⊢ {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o |
5 | 4 | a1i 11 | . 2 ⊢ (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} Fn 2o) |
6 | id 22 | . 2 ⊢ (𝐺 Fn 2o → 𝐺 Fn 2o) | |
7 | elpri 4650 | . . . . 5 ⊢ (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o)) | |
8 | df2o3 8480 | . . . . 5 ⊢ 2o = {∅, 1o} | |
9 | 7, 8 | eleq2s 2850 | . . . 4 ⊢ (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o)) |
10 | fvpr0o 17512 | . . . . . . 7 ⊢ ((𝐺‘∅) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅)) | |
11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅) = (𝐺‘∅) |
12 | fveq2 6891 | . . . . . 6 ⊢ (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘∅)) | |
13 | fveq2 6891 | . . . . . 6 ⊢ (𝑘 = ∅ → (𝐺‘𝑘) = (𝐺‘∅)) | |
14 | 11, 12, 13 | 3eqtr4a 2797 | . . . . 5 ⊢ (𝑘 = ∅ → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺‘𝑘)) |
15 | fvpr1o 17513 | . . . . . . 7 ⊢ ((𝐺‘1o) ∈ V → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o)) | |
16 | 2, 15 | ax-mp 5 | . . . . . 6 ⊢ ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o) = (𝐺‘1o) |
17 | fveq2 6891 | . . . . . 6 ⊢ (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘1o)) | |
18 | fveq2 6891 | . . . . . 6 ⊢ (𝑘 = 1o → (𝐺‘𝑘) = (𝐺‘1o)) | |
19 | 16, 17, 18 | 3eqtr4a 2797 | . . . . 5 ⊢ (𝑘 = 1o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺‘𝑘)) |
20 | 14, 19 | jaoi 854 | . . . 4 ⊢ ((𝑘 = ∅ ∨ 𝑘 = 1o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺‘𝑘)) |
21 | 9, 20 | syl 17 | . . 3 ⊢ (𝑘 ∈ 2o → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺‘𝑘)) |
22 | 21 | adantl 481 | . 2 ⊢ ((𝐺 Fn 2o ∧ 𝑘 ∈ 2o) → ({⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩}‘𝑘) = (𝐺‘𝑘)) |
23 | 5, 6, 22 | eqfnfvd 7035 | 1 ⊢ (𝐺 Fn 2o → {⟨∅, (𝐺‘∅)⟩, ⟨1o, (𝐺‘1o)⟩} = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 {cpr 4630 ⟨cop 4634 Fn wfn 6538 ‘cfv 6543 1oc1o 8465 2oc2o 8466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-om 7860 df-1o 8472 df-2o 8473 |
This theorem is referenced by: xpsff1o 17520 xpstopnlem2 23635 |
Copyright terms: Public domain | W3C validator |