| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsfeq | Structured version Visualization version GIF version | ||
| Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsfeq | ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6894 | . . . 4 ⊢ (𝐺‘∅) ∈ V | |
| 2 | fvex 6894 | . . . 4 ⊢ (𝐺‘1o) ∈ V | |
| 3 | fnpr2o 17576 | . . . 4 ⊢ (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) |
| 6 | id 22 | . 2 ⊢ (𝐺 Fn 2o → 𝐺 Fn 2o) | |
| 7 | elpri 4630 | . . . . 5 ⊢ (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o)) | |
| 8 | df2o3 8493 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleq2s 2853 | . . . 4 ⊢ (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o)) |
| 10 | fvpr0o 17578 | . . . . . . 7 ⊢ ((𝐺‘∅) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅)) | |
| 11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅) |
| 12 | fveq2 6881 | . . . . . 6 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅)) | |
| 13 | fveq2 6881 | . . . . . 6 ⊢ (𝑘 = ∅ → (𝐺‘𝑘) = (𝐺‘∅)) | |
| 14 | 11, 12, 13 | 3eqtr4a 2797 | . . . . 5 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 15 | fvpr1o 17579 | . . . . . . 7 ⊢ ((𝐺‘1o) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o)) | |
| 16 | 2, 15 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o) |
| 17 | fveq2 6881 | . . . . . 6 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o)) | |
| 18 | fveq2 6881 | . . . . . 6 ⊢ (𝑘 = 1o → (𝐺‘𝑘) = (𝐺‘1o)) | |
| 19 | 16, 17, 18 | 3eqtr4a 2797 | . . . . 5 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 20 | 14, 19 | jaoi 857 | . . . 4 ⊢ ((𝑘 = ∅ ∨ 𝑘 = 1o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 21 | 9, 20 | syl 17 | . . 3 ⊢ (𝑘 ∈ 2o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 22 | 21 | adantl 481 | . 2 ⊢ ((𝐺 Fn 2o ∧ 𝑘 ∈ 2o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 23 | 5, 6, 22 | eqfnfvd 7029 | 1 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {cpr 4608 〈cop 4612 Fn wfn 6531 ‘cfv 6536 1oc1o 8478 2oc2o 8479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-om 7867 df-1o 8485 df-2o 8486 |
| This theorem is referenced by: xpsff1o 17586 xpstopnlem2 23754 |
| Copyright terms: Public domain | W3C validator |