| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsfeq | Structured version Visualization version GIF version | ||
| Description: A function on 2o is determined by its values at zero and one. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsfeq | ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . . . 4 ⊢ (𝐺‘∅) ∈ V | |
| 2 | fvex 6874 | . . . 4 ⊢ (𝐺‘1o) ∈ V | |
| 3 | fnpr2o 17527 | . . . 4 ⊢ (((𝐺‘∅) ∈ V ∧ (𝐺‘1o) ∈ V) → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} Fn 2o) |
| 6 | id 22 | . 2 ⊢ (𝐺 Fn 2o → 𝐺 Fn 2o) | |
| 7 | elpri 4616 | . . . . 5 ⊢ (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o)) | |
| 8 | df2o3 8445 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 9 | 7, 8 | eleq2s 2847 | . . . 4 ⊢ (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o)) |
| 10 | fvpr0o 17529 | . . . . . . 7 ⊢ ((𝐺‘∅) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅)) | |
| 11 | 1, 10 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅) = (𝐺‘∅) |
| 12 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘∅)) | |
| 13 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = ∅ → (𝐺‘𝑘) = (𝐺‘∅)) | |
| 14 | 11, 12, 13 | 3eqtr4a 2791 | . . . . 5 ⊢ (𝑘 = ∅ → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 15 | fvpr1o 17530 | . . . . . . 7 ⊢ ((𝐺‘1o) ∈ V → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o)) | |
| 16 | 2, 15 | ax-mp 5 | . . . . . 6 ⊢ ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o) = (𝐺‘1o) |
| 17 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘1o)) | |
| 18 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = 1o → (𝐺‘𝑘) = (𝐺‘1o)) | |
| 19 | 16, 17, 18 | 3eqtr4a 2791 | . . . . 5 ⊢ (𝑘 = 1o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 20 | 14, 19 | jaoi 857 | . . . 4 ⊢ ((𝑘 = ∅ ∨ 𝑘 = 1o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 21 | 9, 20 | syl 17 | . . 3 ⊢ (𝑘 ∈ 2o → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 22 | 21 | adantl 481 | . 2 ⊢ ((𝐺 Fn 2o ∧ 𝑘 ∈ 2o) → ({〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉}‘𝑘) = (𝐺‘𝑘)) |
| 23 | 5, 6, 22 | eqfnfvd 7009 | 1 ⊢ (𝐺 Fn 2o → {〈∅, (𝐺‘∅)〉, 〈1o, (𝐺‘1o)〉} = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {cpr 4594 〈cop 4598 Fn wfn 6509 ‘cfv 6514 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-om 7846 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: xpsff1o 17537 xpstopnlem2 23705 |
| Copyright terms: Public domain | W3C validator |