| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map2xp | Structured version Visualization version GIF version | ||
| Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| map2xp | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8393 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 2 | df-pr 4579 | . . . . 5 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 3 | 1, 2 | eqtri 2754 | . . . 4 ⊢ 2o = ({∅} ∪ {1o}) |
| 4 | 3 | oveq2i 7357 | . . 3 ⊢ (𝐴 ↑m 2o) = (𝐴 ↑m ({∅} ∪ {1o})) |
| 5 | snex 5374 | . . . . 5 ⊢ {∅} ∈ V | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
| 7 | snex 5374 | . . . . 5 ⊢ {1o} ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
| 9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 10 | 1n0 8403 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
| 11 | 10 | neii 2930 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
| 12 | elsni 4593 | . . . . . . 7 ⊢ (1o ∈ {∅} → 1o = ∅) | |
| 13 | 11, 12 | mto 197 | . . . . . 6 ⊢ ¬ 1o ∈ {∅} |
| 14 | disjsn 4664 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅}) | |
| 15 | 13, 14 | mpbir 231 | . . . . 5 ⊢ ({∅} ∩ {1o}) = ∅ |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} ∩ {1o}) = ∅) |
| 17 | mapunen 9059 | . . . 4 ⊢ ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴 ∈ 𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) | |
| 18 | 6, 8, 9, 16, 17 | syl31anc 1375 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
| 19 | 4, 18 | eqbrtrid 5126 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
| 20 | 0ex 5245 | . . . . 5 ⊢ ∅ ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
| 22 | 9, 21 | mapsnend 8958 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {∅}) ≈ 𝐴) |
| 23 | 1oex 8395 | . . . . 5 ⊢ 1o ∈ V | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
| 25 | 9, 24 | mapsnend 8958 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {1o}) ≈ 𝐴) |
| 26 | xpen 9053 | . . 3 ⊢ (((𝐴 ↑m {∅}) ≈ 𝐴 ∧ (𝐴 ↑m {1o}) ≈ 𝐴) → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) | |
| 27 | 22, 25, 26 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) |
| 28 | entr 8928 | . 2 ⊢ (((𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ∧ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | |
| 29 | 19, 27, 28 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 {csn 4576 {cpr 4578 class class class wbr 5091 × cxp 5614 (class class class)co 7346 1oc1o 8378 2oc2o 8379 ↑m cmap 8750 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 |
| This theorem is referenced by: pwxpndom2 10553 |
| Copyright terms: Public domain | W3C validator |