![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map2xp | Structured version Visualization version GIF version |
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
map2xp | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8470 | . . . . 5 ⊢ 2o = {∅, 1o} | |
2 | df-pr 4630 | . . . . 5 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
3 | 1, 2 | eqtri 2760 | . . . 4 ⊢ 2o = ({∅} ∪ {1o}) |
4 | 3 | oveq2i 7416 | . . 3 ⊢ (𝐴 ↑m 2o) = (𝐴 ↑m ({∅} ∪ {1o})) |
5 | snex 5430 | . . . . 5 ⊢ {∅} ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
7 | snex 5430 | . . . . 5 ⊢ {1o} ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
10 | 1n0 8484 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
11 | 10 | neii 2942 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
12 | elsni 4644 | . . . . . . 7 ⊢ (1o ∈ {∅} → 1o = ∅) | |
13 | 11, 12 | mto 196 | . . . . . 6 ⊢ ¬ 1o ∈ {∅} |
14 | disjsn 4714 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅}) | |
15 | 13, 14 | mpbir 230 | . . . . 5 ⊢ ({∅} ∩ {1o}) = ∅ |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} ∩ {1o}) = ∅) |
17 | mapunen 9142 | . . . 4 ⊢ ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴 ∈ 𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) | |
18 | 6, 8, 9, 16, 17 | syl31anc 1373 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
19 | 4, 18 | eqbrtrid 5182 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
20 | 0ex 5306 | . . . . 5 ⊢ ∅ ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
22 | 9, 21 | mapsnend 9032 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {∅}) ≈ 𝐴) |
23 | 1oex 8472 | . . . . 5 ⊢ 1o ∈ V | |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
25 | 9, 24 | mapsnend 9032 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {1o}) ≈ 𝐴) |
26 | xpen 9136 | . . 3 ⊢ (((𝐴 ↑m {∅}) ≈ 𝐴 ∧ (𝐴 ↑m {1o}) ≈ 𝐴) → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) | |
27 | 22, 25, 26 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) |
28 | entr 8998 | . 2 ⊢ (((𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ∧ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | |
29 | 19, 27, 28 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 {csn 4627 {cpr 4629 class class class wbr 5147 × cxp 5673 (class class class)co 7405 1oc1o 8455 2oc2o 8456 ↑m cmap 8816 ≈ cen 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 |
This theorem is referenced by: pwxpndom2 10656 |
Copyright terms: Public domain | W3C validator |