MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2xp Structured version   Visualization version   GIF version

Theorem map2xp 9117
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
map2xp (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))

Proof of Theorem map2xp
StepHypRef Expression
1 df2o3 8445 . . . . 5 2o = {∅, 1o}
2 df-pr 4595 . . . . 5 {∅, 1o} = ({∅} ∪ {1o})
31, 2eqtri 2753 . . . 4 2o = ({∅} ∪ {1o})
43oveq2i 7401 . . 3 (𝐴m 2o) = (𝐴m ({∅} ∪ {1o}))
5 snex 5394 . . . . 5 {∅} ∈ V
65a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
7 snex 5394 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
10 1n0 8455 . . . . . . . 8 1o ≠ ∅
1110neii 2928 . . . . . . 7 ¬ 1o = ∅
12 elsni 4609 . . . . . . 7 (1o ∈ {∅} → 1o = ∅)
1311, 12mto 197 . . . . . 6 ¬ 1o ∈ {∅}
14 disjsn 4678 . . . . . 6 (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅})
1513, 14mpbir 231 . . . . 5 ({∅} ∩ {1o}) = ∅
1615a1i 11 . . . 4 (𝐴𝑉 → ({∅} ∩ {1o}) = ∅)
17 mapunen 9116 . . . 4 ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
186, 8, 9, 16, 17syl31anc 1375 . . 3 (𝐴𝑉 → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
194, 18eqbrtrid 5145 . 2 (𝐴𝑉 → (𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
20 0ex 5265 . . . . 5 ∅ ∈ V
2120a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
229, 21mapsnend 9010 . . 3 (𝐴𝑉 → (𝐴m {∅}) ≈ 𝐴)
23 1oex 8447 . . . . 5 1o ∈ V
2423a1i 11 . . . 4 (𝐴𝑉 → 1o ∈ V)
259, 24mapsnend 9010 . . 3 (𝐴𝑉 → (𝐴m {1o}) ≈ 𝐴)
26 xpen 9110 . . 3 (((𝐴m {∅}) ≈ 𝐴 ∧ (𝐴m {1o}) ≈ 𝐴) → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
2722, 25, 26syl2anc 584 . 2 (𝐴𝑉 → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
28 entr 8980 . 2 (((𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})) ∧ ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴m 2o) ≈ (𝐴 × 𝐴))
2919, 27, 28syl2anc 584 1 (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  cin 3916  c0 4299  {csn 4592  {cpr 4594   class class class wbr 5110   × cxp 5639  (class class class)co 7390  1oc1o 8430  2oc2o 8431  m cmap 8802  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923
This theorem is referenced by:  pwxpndom2  10625
  Copyright terms: Public domain W3C validator