MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2xp Structured version   Visualization version   GIF version

Theorem map2xp 9142
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
map2xp (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))

Proof of Theorem map2xp
StepHypRef Expression
1 df2o3 8469 . . . . 5 2o = {∅, 1o}
2 df-pr 4623 . . . . 5 {∅, 1o} = ({∅} ∪ {1o})
31, 2eqtri 2752 . . . 4 2o = ({∅} ∪ {1o})
43oveq2i 7412 . . 3 (𝐴m 2o) = (𝐴m ({∅} ∪ {1o}))
5 snex 5421 . . . . 5 {∅} ∈ V
65a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
7 snex 5421 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
10 1n0 8483 . . . . . . . 8 1o ≠ ∅
1110neii 2934 . . . . . . 7 ¬ 1o = ∅
12 elsni 4637 . . . . . . 7 (1o ∈ {∅} → 1o = ∅)
1311, 12mto 196 . . . . . 6 ¬ 1o ∈ {∅}
14 disjsn 4707 . . . . . 6 (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅})
1513, 14mpbir 230 . . . . 5 ({∅} ∩ {1o}) = ∅
1615a1i 11 . . . 4 (𝐴𝑉 → ({∅} ∩ {1o}) = ∅)
17 mapunen 9141 . . . 4 ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
186, 8, 9, 16, 17syl31anc 1370 . . 3 (𝐴𝑉 → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
194, 18eqbrtrid 5173 . 2 (𝐴𝑉 → (𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
20 0ex 5297 . . . . 5 ∅ ∈ V
2120a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
229, 21mapsnend 9031 . . 3 (𝐴𝑉 → (𝐴m {∅}) ≈ 𝐴)
23 1oex 8471 . . . . 5 1o ∈ V
2423a1i 11 . . . 4 (𝐴𝑉 → 1o ∈ V)
259, 24mapsnend 9031 . . 3 (𝐴𝑉 → (𝐴m {1o}) ≈ 𝐴)
26 xpen 9135 . . 3 (((𝐴m {∅}) ≈ 𝐴 ∧ (𝐴m {1o}) ≈ 𝐴) → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
2722, 25, 26syl2anc 583 . 2 (𝐴𝑉 → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
28 entr 8997 . 2 (((𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})) ∧ ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴m 2o) ≈ (𝐴 × 𝐴))
2919, 27, 28syl2anc 583 1 (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  cun 3938  cin 3939  c0 4314  {csn 4620  {cpr 4622   class class class wbr 5138   × cxp 5664  (class class class)co 7401  1oc1o 8454  2oc2o 8455  m cmap 8815  cen 8931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-en 8935  df-dom 8936
This theorem is referenced by:  pwxpndom2  10655
  Copyright terms: Public domain W3C validator