MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2xp Structured version   Visualization version   GIF version

Theorem map2xp 9067
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
map2xp (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))

Proof of Theorem map2xp
StepHypRef Expression
1 df2o3 8399 . . . . 5 2o = {∅, 1o}
2 df-pr 4578 . . . . 5 {∅, 1o} = ({∅} ∪ {1o})
31, 2eqtri 2756 . . . 4 2o = ({∅} ∪ {1o})
43oveq2i 7363 . . 3 (𝐴m 2o) = (𝐴m ({∅} ∪ {1o}))
5 snex 5376 . . . . 5 {∅} ∈ V
65a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
7 snex 5376 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
10 1n0 8409 . . . . . . . 8 1o ≠ ∅
1110neii 2931 . . . . . . 7 ¬ 1o = ∅
12 elsni 4592 . . . . . . 7 (1o ∈ {∅} → 1o = ∅)
1311, 12mto 197 . . . . . 6 ¬ 1o ∈ {∅}
14 disjsn 4663 . . . . . 6 (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅})
1513, 14mpbir 231 . . . . 5 ({∅} ∩ {1o}) = ∅
1615a1i 11 . . . 4 (𝐴𝑉 → ({∅} ∩ {1o}) = ∅)
17 mapunen 9066 . . . 4 ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
186, 8, 9, 16, 17syl31anc 1375 . . 3 (𝐴𝑉 → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
194, 18eqbrtrid 5128 . 2 (𝐴𝑉 → (𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
20 0ex 5247 . . . . 5 ∅ ∈ V
2120a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
229, 21mapsnend 8965 . . 3 (𝐴𝑉 → (𝐴m {∅}) ≈ 𝐴)
23 1oex 8401 . . . . 5 1o ∈ V
2423a1i 11 . . . 4 (𝐴𝑉 → 1o ∈ V)
259, 24mapsnend 8965 . . 3 (𝐴𝑉 → (𝐴m {1o}) ≈ 𝐴)
26 xpen 9060 . . 3 (((𝐴m {∅}) ≈ 𝐴 ∧ (𝐴m {1o}) ≈ 𝐴) → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
2722, 25, 26syl2anc 584 . 2 (𝐴𝑉 → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
28 entr 8935 . 2 (((𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})) ∧ ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴m 2o) ≈ (𝐴 × 𝐴))
2919, 27, 28syl2anc 584 1 (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  cin 3897  c0 4282  {csn 4575  {cpr 4577   class class class wbr 5093   × cxp 5617  (class class class)co 7352  1oc1o 8384  2oc2o 8385  m cmap 8756  cen 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877
This theorem is referenced by:  pwxpndom2  10563
  Copyright terms: Public domain W3C validator