| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > map2xp | Structured version Visualization version GIF version | ||
| Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
| Ref | Expression |
|---|---|
| map2xp | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8442 | . . . . 5 ⊢ 2o = {∅, 1o} | |
| 2 | df-pr 4592 | . . . . 5 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
| 3 | 1, 2 | eqtri 2752 | . . . 4 ⊢ 2o = ({∅} ∪ {1o}) |
| 4 | 3 | oveq2i 7398 | . . 3 ⊢ (𝐴 ↑m 2o) = (𝐴 ↑m ({∅} ∪ {1o})) |
| 5 | snex 5391 | . . . . 5 ⊢ {∅} ∈ V | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
| 7 | snex 5391 | . . . . 5 ⊢ {1o} ∈ V | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
| 9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 10 | 1n0 8452 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
| 11 | 10 | neii 2927 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
| 12 | elsni 4606 | . . . . . . 7 ⊢ (1o ∈ {∅} → 1o = ∅) | |
| 13 | 11, 12 | mto 197 | . . . . . 6 ⊢ ¬ 1o ∈ {∅} |
| 14 | disjsn 4675 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅}) | |
| 15 | 13, 14 | mpbir 231 | . . . . 5 ⊢ ({∅} ∩ {1o}) = ∅ |
| 16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} ∩ {1o}) = ∅) |
| 17 | mapunen 9110 | . . . 4 ⊢ ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴 ∈ 𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) | |
| 18 | 6, 8, 9, 16, 17 | syl31anc 1375 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
| 19 | 4, 18 | eqbrtrid 5142 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
| 20 | 0ex 5262 | . . . . 5 ⊢ ∅ ∈ V | |
| 21 | 20 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
| 22 | 9, 21 | mapsnend 9007 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {∅}) ≈ 𝐴) |
| 23 | 1oex 8444 | . . . . 5 ⊢ 1o ∈ V | |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
| 25 | 9, 24 | mapsnend 9007 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {1o}) ≈ 𝐴) |
| 26 | xpen 9104 | . . 3 ⊢ (((𝐴 ↑m {∅}) ≈ 𝐴 ∧ (𝐴 ↑m {1o}) ≈ 𝐴) → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) | |
| 27 | 22, 25, 26 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) |
| 28 | entr 8977 | . 2 ⊢ (((𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ∧ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | |
| 29 | 19, 27, 28 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 {csn 4589 {cpr 4591 class class class wbr 5107 × cxp 5636 (class class class)co 7387 1oc1o 8427 2oc2o 8428 ↑m cmap 8799 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 |
| This theorem is referenced by: pwxpndom2 10618 |
| Copyright terms: Public domain | W3C validator |