Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > map2xp | Structured version Visualization version GIF version |
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
map2xp | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8158 | . . . . 5 ⊢ 2o = {∅, 1o} | |
2 | df-pr 4529 | . . . . 5 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
3 | 1, 2 | eqtri 2762 | . . . 4 ⊢ 2o = ({∅} ∪ {1o}) |
4 | 3 | oveq2i 7193 | . . 3 ⊢ (𝐴 ↑m 2o) = (𝐴 ↑m ({∅} ∪ {1o})) |
5 | snex 5308 | . . . . 5 ⊢ {∅} ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
7 | snex 5308 | . . . . 5 ⊢ {1o} ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
10 | 1n0 8162 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
11 | 10 | neii 2937 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
12 | elsni 4543 | . . . . . . 7 ⊢ (1o ∈ {∅} → 1o = ∅) | |
13 | 11, 12 | mto 200 | . . . . . 6 ⊢ ¬ 1o ∈ {∅} |
14 | disjsn 4612 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅}) | |
15 | 13, 14 | mpbir 234 | . . . . 5 ⊢ ({∅} ∩ {1o}) = ∅ |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} ∩ {1o}) = ∅) |
17 | mapunen 8748 | . . . 4 ⊢ ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴 ∈ 𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) | |
18 | 6, 8, 9, 16, 17 | syl31anc 1374 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
19 | 4, 18 | eqbrtrid 5075 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
20 | 0ex 5185 | . . . . 5 ⊢ ∅ ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
22 | 9, 21 | mapsnend 8647 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {∅}) ≈ 𝐴) |
23 | 1oex 8156 | . . . . 5 ⊢ 1o ∈ V | |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
25 | 9, 24 | mapsnend 8647 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {1o}) ≈ 𝐴) |
26 | xpen 8742 | . . 3 ⊢ (((𝐴 ↑m {∅}) ≈ 𝐴 ∧ (𝐴 ↑m {1o}) ≈ 𝐴) → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) | |
27 | 22, 25, 26 | syl2anc 587 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) |
28 | entr 8619 | . 2 ⊢ (((𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ∧ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | |
29 | 19, 27, 28 | syl2anc 587 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3400 ∪ cun 3851 ∩ cin 3852 ∅c0 4221 {csn 4526 {cpr 4528 class class class wbr 5040 × cxp 5533 (class class class)co 7182 1oc1o 8136 2oc2o 8137 ↑m cmap 8449 ≈ cen 8564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-ov 7185 df-oprab 7186 df-mpo 7187 df-1st 7726 df-2nd 7727 df-1o 8143 df-2o 8144 df-er 8332 df-map 8451 df-en 8568 df-dom 8569 |
This theorem is referenced by: pwxpndom2 10177 |
Copyright terms: Public domain | W3C validator |