![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > map2xp | Structured version Visualization version GIF version |
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
map2xp | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8469 | . . . . 5 ⊢ 2o = {∅, 1o} | |
2 | df-pr 4623 | . . . . 5 ⊢ {∅, 1o} = ({∅} ∪ {1o}) | |
3 | 1, 2 | eqtri 2752 | . . . 4 ⊢ 2o = ({∅} ∪ {1o}) |
4 | 3 | oveq2i 7412 | . . 3 ⊢ (𝐴 ↑m 2o) = (𝐴 ↑m ({∅} ∪ {1o})) |
5 | snex 5421 | . . . . 5 ⊢ {∅} ∈ V | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {∅} ∈ V) |
7 | snex 5421 | . . . . 5 ⊢ {1o} ∈ V | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {1o} ∈ V) |
9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
10 | 1n0 8483 | . . . . . . . 8 ⊢ 1o ≠ ∅ | |
11 | 10 | neii 2934 | . . . . . . 7 ⊢ ¬ 1o = ∅ |
12 | elsni 4637 | . . . . . . 7 ⊢ (1o ∈ {∅} → 1o = ∅) | |
13 | 11, 12 | mto 196 | . . . . . 6 ⊢ ¬ 1o ∈ {∅} |
14 | disjsn 4707 | . . . . . 6 ⊢ (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅}) | |
15 | 13, 14 | mpbir 230 | . . . . 5 ⊢ ({∅} ∩ {1o}) = ∅ |
16 | 15 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({∅} ∩ {1o}) = ∅) |
17 | mapunen 9141 | . . . 4 ⊢ ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴 ∈ 𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) | |
18 | 6, 8, 9, 16, 17 | syl31anc 1370 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m ({∅} ∪ {1o})) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
19 | 4, 18 | eqbrtrid 5173 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o}))) |
20 | 0ex 5297 | . . . . 5 ⊢ ∅ ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∅ ∈ V) |
22 | 9, 21 | mapsnend 9031 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {∅}) ≈ 𝐴) |
23 | 1oex 8471 | . . . . 5 ⊢ 1o ∈ V | |
24 | 23 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
25 | 9, 24 | mapsnend 9031 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m {1o}) ≈ 𝐴) |
26 | xpen 9135 | . . 3 ⊢ (((𝐴 ↑m {∅}) ≈ 𝐴 ∧ (𝐴 ↑m {1o}) ≈ 𝐴) → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) | |
27 | 22, 25, 26 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) |
28 | entr 8997 | . 2 ⊢ (((𝐴 ↑m 2o) ≈ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ∧ ((𝐴 ↑m {∅}) × (𝐴 ↑m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | |
29 | 19, 27, 28 | syl2anc 583 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∪ cun 3938 ∩ cin 3939 ∅c0 4314 {csn 4620 {cpr 4622 class class class wbr 5138 × cxp 5664 (class class class)co 7401 1oc1o 8454 2oc2o 8455 ↑m cmap 8815 ≈ cen 8931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 |
This theorem is referenced by: pwxpndom2 10655 |
Copyright terms: Public domain | W3C validator |