MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2xp Structured version   Visualization version   GIF version

Theorem map2xp 9071
Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.)
Assertion
Ref Expression
map2xp (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))

Proof of Theorem map2xp
StepHypRef Expression
1 df2o3 8403 . . . . 5 2o = {∅, 1o}
2 df-pr 4582 . . . . 5 {∅, 1o} = ({∅} ∪ {1o})
31, 2eqtri 2752 . . . 4 2o = ({∅} ∪ {1o})
43oveq2i 7364 . . 3 (𝐴m 2o) = (𝐴m ({∅} ∪ {1o}))
5 snex 5378 . . . . 5 {∅} ∈ V
65a1i 11 . . . 4 (𝐴𝑉 → {∅} ∈ V)
7 snex 5378 . . . . 5 {1o} ∈ V
87a1i 11 . . . 4 (𝐴𝑉 → {1o} ∈ V)
9 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
10 1n0 8413 . . . . . . . 8 1o ≠ ∅
1110neii 2927 . . . . . . 7 ¬ 1o = ∅
12 elsni 4596 . . . . . . 7 (1o ∈ {∅} → 1o = ∅)
1311, 12mto 197 . . . . . 6 ¬ 1o ∈ {∅}
14 disjsn 4665 . . . . . 6 (({∅} ∩ {1o}) = ∅ ↔ ¬ 1o ∈ {∅})
1513, 14mpbir 231 . . . . 5 ({∅} ∩ {1o}) = ∅
1615a1i 11 . . . 4 (𝐴𝑉 → ({∅} ∩ {1o}) = ∅)
17 mapunen 9070 . . . 4 ((({∅} ∈ V ∧ {1o} ∈ V ∧ 𝐴𝑉) ∧ ({∅} ∩ {1o}) = ∅) → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
186, 8, 9, 16, 17syl31anc 1375 . . 3 (𝐴𝑉 → (𝐴m ({∅} ∪ {1o})) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
194, 18eqbrtrid 5130 . 2 (𝐴𝑉 → (𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})))
20 0ex 5249 . . . . 5 ∅ ∈ V
2120a1i 11 . . . 4 (𝐴𝑉 → ∅ ∈ V)
229, 21mapsnend 8968 . . 3 (𝐴𝑉 → (𝐴m {∅}) ≈ 𝐴)
23 1oex 8405 . . . . 5 1o ∈ V
2423a1i 11 . . . 4 (𝐴𝑉 → 1o ∈ V)
259, 24mapsnend 8968 . . 3 (𝐴𝑉 → (𝐴m {1o}) ≈ 𝐴)
26 xpen 9064 . . 3 (((𝐴m {∅}) ≈ 𝐴 ∧ (𝐴m {1o}) ≈ 𝐴) → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
2722, 25, 26syl2anc 584 . 2 (𝐴𝑉 → ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴))
28 entr 8938 . 2 (((𝐴m 2o) ≈ ((𝐴m {∅}) × (𝐴m {1o})) ∧ ((𝐴m {∅}) × (𝐴m {1o})) ≈ (𝐴 × 𝐴)) → (𝐴m 2o) ≈ (𝐴 × 𝐴))
2919, 27, 28syl2anc 584 1 (𝐴𝑉 → (𝐴m 2o) ≈ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  cin 3904  c0 4286  {csn 4579  {cpr 4581   class class class wbr 5095   × cxp 5621  (class class class)co 7353  1oc1o 8388  2oc2o 8389  m cmap 8760  cen 8876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881
This theorem is referenced by:  pwxpndom2  10578
  Copyright terms: Public domain W3C validator