Proof of Theorem dihord2b
Step | Hyp | Ref
| Expression |
1 | | dihjust.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | dihjust.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | simp11 1205 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
4 | 1, 2, 3 | dvhlmod 38861 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑈 ∈ LMod) |
5 | | eqid 2737 |
. . . . . 6
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
6 | 5 | lsssssubg 19995 |
. . . . 5
⊢ (𝑈 ∈ LMod →
(LSubSp‘𝑈) ⊆
(SubGrp‘𝑈)) |
7 | 4, 6 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
8 | | simp12 1206 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
9 | | dihjust.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
10 | | dihjust.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
11 | | dihjust.J |
. . . . . 6
⊢ 𝐽 = ((DIsoC‘𝐾)‘𝑊) |
12 | 9, 10, 1, 2, 11, 5 | diclss 38944 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) |
13 | 3, 8, 12 | syl2anc 587 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐽‘𝑄) ∈ (LSubSp‘𝑈)) |
14 | 7, 13 | sseldd 3902 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐽‘𝑄) ∈ (SubGrp‘𝑈)) |
15 | | simp11l 1286 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝐾 ∈ HL) |
16 | 15 | hllatd 37115 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝐾 ∈ Lat) |
17 | | simp2l 1201 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑋 ∈ 𝐵) |
18 | | simp11r 1287 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑊 ∈ 𝐻) |
19 | | dihjust.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
20 | 19, 1 | lhpbase 37749 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
21 | 18, 20 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → 𝑊 ∈ 𝐵) |
22 | | dihjust.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
23 | 19, 22 | latmcl 17946 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
24 | 16, 17, 21, 23 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ∈ 𝐵) |
25 | 19, 9, 22 | latmle2 17971 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
26 | 16, 17, 21, 25 | syl3anc 1373 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝑋 ∧ 𝑊) ≤ 𝑊) |
27 | | dihjust.i |
. . . . . 6
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
28 | 19, 9, 1, 2, 27, 5 | diblss 38921 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑋 ∧ 𝑊) ∈ 𝐵 ∧ (𝑋 ∧ 𝑊) ≤ 𝑊)) → (𝐼‘(𝑋 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
29 | 3, 24, 26, 28 | syl12anc 837 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐼‘(𝑋 ∧ 𝑊)) ∈ (LSubSp‘𝑈)) |
30 | 7, 29 | sseldd 3902 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐼‘(𝑋 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) |
31 | | dihjust.s |
. . . 4
⊢ ⊕ =
(LSSum‘𝑈) |
32 | 31 | lsmub2 19047 |
. . 3
⊢ (((𝐽‘𝑄) ∈ (SubGrp‘𝑈) ∧ (𝐼‘(𝑋 ∧ 𝑊)) ∈ (SubGrp‘𝑈)) → (𝐼‘(𝑋 ∧ 𝑊)) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊)))) |
33 | 14, 30, 32 | syl2anc 587 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐼‘(𝑋 ∧ 𝑊)) ⊆ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊)))) |
34 | | simp3 1140 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |
35 | 33, 34 | sstrd 3911 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝐽‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑊))) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) → (𝐼‘(𝑋 ∧ 𝑊)) ⊆ ((𝐽‘𝑅) ⊕ (𝐼‘(𝑌 ∧ 𝑊)))) |