Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem17 Structured version   Visualization version   GIF version

Theorem etransclem17 43249
Description: The 𝑁-th derivative of 𝐻. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem17.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem17.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem17.p (𝜑𝑃 ∈ ℕ)
etransclem17.1 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem17.J (𝜑𝐽 ∈ (0...𝑀))
etransclem17.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem17 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem17
StepHypRef Expression
1 etransclem17.1 . . . . . 6 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
2 etransclem17.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ {ℝ, ℂ})
3 etransclem17.x . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
42, 3dvdmsscn 42934 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
54sselda 3893 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
65adantlr 715 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
7 elfzelz 12946 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
87zcnd 12117 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
98ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 ∈ ℂ)
106, 9negsubd 11031 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥 + -𝑗) = (𝑥𝑗))
1110eqcomd 2765 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥𝑗) = (𝑥 + -𝑗))
1211oveq1d 7163 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312mpteq2dva 5125 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
1413mpteq2dva 5125 . . . . . 6 (𝜑 → (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
151, 14syl5eq 2806 . . . . 5 (𝜑𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
16 negeq 10906 . . . . . . . . 9 (𝑗 = 𝐽 → -𝑗 = -𝐽)
1716oveq2d 7164 . . . . . . . 8 (𝑗 = 𝐽 → (𝑥 + -𝑗) = (𝑥 + -𝐽))
18 eqeq1 2763 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑗 = 0 ↔ 𝐽 = 0))
1918ifbid 4441 . . . . . . . 8 (𝑗 = 𝐽 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2017, 19oveq12d 7166 . . . . . . 7 (𝑗 = 𝐽 → ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2120mpteq2dv 5126 . . . . . 6 (𝑗 = 𝐽 → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2221adantl 486 . . . . 5 ((𝜑𝑗 = 𝐽) → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
23 etransclem17.J . . . . 5 (𝜑𝐽 ∈ (0...𝑀))
24 mptexg 6973 . . . . . 6 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
253, 24syl 17 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
2615, 22, 23, 25fvmptd 6764 . . . 4 (𝜑 → (𝐻𝐽) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2726oveq2d 7164 . . 3 (𝜑 → (𝑆 D𝑛 (𝐻𝐽)) = (𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))))
2827fveq1d 6658 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁))
29 etransclem17.n . . 3 (𝜑𝑁 ∈ ℕ0)
30 elfzelz 12946 . . . . . . 7 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ)
3130zcnd 12117 . . . . . 6 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ)
3223, 31syl 17 . . . . 5 (𝜑𝐽 ∈ ℂ)
3332negcld 11012 . . . 4 (𝜑 → -𝐽 ∈ ℂ)
34 etransclem17.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
35 nnm1nn0 11965 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3634, 35syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3734nnnn0d 11984 . . . . 5 (𝜑𝑃 ∈ ℕ0)
3836, 37ifcld 4464 . . . 4 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
39 eqid 2759 . . . 4 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
402, 3, 33, 38, 39dvnxpaek 42940 . . 3 ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4129, 40mpdan 687 . 2 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4232adantr 485 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
435, 42negsubd 11031 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 + -𝐽) = (𝑥𝐽))
4443oveq1d 7163 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
4544oveq2d 7164 . . . 4 ((𝜑𝑥𝑋) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
4645ifeq2d 4438 . . 3 ((𝜑𝑥𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
4746mpteq2dva 5125 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4828, 41, 473eqtrd 2798 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  Vcvv 3410  ifcif 4418  {cpr 4522   class class class wbr 5030  cmpt 5110  cfv 6333  (class class class)co 7148  cc 10563  cr 10564  0cc0 10565  1c1 10566   + caddc 10568   · cmul 10570   < clt 10703  cmin 10898  -cneg 10899   / cdiv 11325  cn 11664  0cn0 11924  ...cfz 12929  cexp 13469  !cfa 13673  t crest 16742  TopOpenctopn 16743  fldccnfld 20156   D𝑛 cdvn 24553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-inf2 9127  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643  ax-addf 10644  ax-mulf 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-supp 7834  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-pm 8417  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fsupp 8857  df-fi 8898  df-sup 8929  df-inf 8930  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-q 12379  df-rp 12421  df-xneg 12538  df-xadd 12539  df-xmul 12540  df-icc 12776  df-fz 12930  df-fzo 13073  df-seq 13409  df-exp 13470  df-fac 13674  df-hash 13731  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-starv 16628  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-unif 16636  df-hom 16637  df-cco 16638  df-rest 16744  df-topn 16745  df-0g 16763  df-gsum 16764  df-topgen 16765  df-pt 16766  df-prds 16769  df-xrs 16823  df-qtop 16828  df-imas 16829  df-xps 16831  df-mre 16905  df-mrc 16906  df-acs 16908  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-mulg 18282  df-cntz 18504  df-cmn 18965  df-psmet 20148  df-xmet 20149  df-met 20150  df-bl 20151  df-mopn 20152  df-fbas 20153  df-fg 20154  df-cnfld 20157  df-top 21584  df-topon 21601  df-topsp 21623  df-bases 21636  df-cld 21709  df-ntr 21710  df-cls 21711  df-nei 21788  df-lp 21826  df-perf 21827  df-cn 21917  df-cnp 21918  df-haus 22005  df-tx 22252  df-hmeo 22445  df-fil 22536  df-fm 22628  df-flim 22629  df-flf 22630  df-xms 23012  df-ms 23013  df-tms 23014  df-cncf 23569  df-limc 24555  df-dv 24556  df-dvn 24557
This theorem is referenced by:  etransclem19  43251  etransclem20  43252  etransclem21  43253  etransclem22  43254
  Copyright terms: Public domain W3C validator