Step | Hyp | Ref
| Expression |
1 | | etransclem17.1 |
. . . . . 6
β’ π» = (π β (0...π) β¦ (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) |
2 | | etransclem17.s |
. . . . . . . . . . . . . 14
β’ (π β π β {β, β}) |
3 | | etransclem17.x |
. . . . . . . . . . . . . 14
β’ (π β π β
((TopOpenββfld) βΎt π)) |
4 | 2, 3 | dvdmsscn 44737 |
. . . . . . . . . . . . 13
β’ (π β π β β) |
5 | 4 | sselda 3982 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β π) β π₯ β β) |
6 | 5 | adantlr 713 |
. . . . . . . . . . 11
β’ (((π β§ π β (0...π)) β§ π₯ β π) β π₯ β β) |
7 | | elfzelz 13503 |
. . . . . . . . . . . . 13
β’ (π β (0...π) β π β β€) |
8 | 7 | zcnd 12669 |
. . . . . . . . . . . 12
β’ (π β (0...π) β π β β) |
9 | 8 | ad2antlr 725 |
. . . . . . . . . . 11
β’ (((π β§ π β (0...π)) β§ π₯ β π) β π β β) |
10 | 6, 9 | negsubd 11579 |
. . . . . . . . . 10
β’ (((π β§ π β (0...π)) β§ π₯ β π) β (π₯ + -π) = (π₯ β π)) |
11 | 10 | eqcomd 2738 |
. . . . . . . . 9
β’ (((π β§ π β (0...π)) β§ π₯ β π) β (π₯ β π) = (π₯ + -π)) |
12 | 11 | oveq1d 7426 |
. . . . . . . 8
β’ (((π β§ π β (0...π)) β§ π₯ β π) β ((π₯ β π)βif(π = 0, (π β 1), π)) = ((π₯ + -π)βif(π = 0, (π β 1), π))) |
13 | 12 | mpteq2dva 5248 |
. . . . . . 7
β’ ((π β§ π β (0...π)) β (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π))) = (π₯ β π β¦ ((π₯ + -π)βif(π = 0, (π β 1), π)))) |
14 | 13 | mpteq2dva 5248 |
. . . . . 6
β’ (π β (π β (0...π) β¦ (π₯ β π β¦ ((π₯ β π)βif(π = 0, (π β 1), π)))) = (π β (0...π) β¦ (π₯ β π β¦ ((π₯ + -π)βif(π = 0, (π β 1), π))))) |
15 | 1, 14 | eqtrid 2784 |
. . . . 5
β’ (π β π» = (π β (0...π) β¦ (π₯ β π β¦ ((π₯ + -π)βif(π = 0, (π β 1), π))))) |
16 | | negeq 11454 |
. . . . . . . . 9
β’ (π = π½ β -π = -π½) |
17 | 16 | oveq2d 7427 |
. . . . . . . 8
β’ (π = π½ β (π₯ + -π) = (π₯ + -π½)) |
18 | | eqeq1 2736 |
. . . . . . . . 9
β’ (π = π½ β (π = 0 β π½ = 0)) |
19 | 18 | ifbid 4551 |
. . . . . . . 8
β’ (π = π½ β if(π = 0, (π β 1), π) = if(π½ = 0, (π β 1), π)) |
20 | 17, 19 | oveq12d 7429 |
. . . . . . 7
β’ (π = π½ β ((π₯ + -π)βif(π = 0, (π β 1), π)) = ((π₯ + -π½)βif(π½ = 0, (π β 1), π))) |
21 | 20 | mpteq2dv 5250 |
. . . . . 6
β’ (π = π½ β (π₯ β π β¦ ((π₯ + -π)βif(π = 0, (π β 1), π))) = (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π)))) |
22 | 21 | adantl 482 |
. . . . 5
β’ ((π β§ π = π½) β (π₯ β π β¦ ((π₯ + -π)βif(π = 0, (π β 1), π))) = (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π)))) |
23 | | etransclem17.J |
. . . . 5
β’ (π β π½ β (0...π)) |
24 | | mptexg 7225 |
. . . . . 6
β’ (π β
((TopOpenββfld) βΎt π) β (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))) β V) |
25 | 3, 24 | syl 17 |
. . . . 5
β’ (π β (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))) β V) |
26 | 15, 22, 23, 25 | fvmptd 7005 |
. . . 4
β’ (π β (π»βπ½) = (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π)))) |
27 | 26 | oveq2d 7427 |
. . 3
β’ (π β (π Dπ (π»βπ½)) = (π Dπ (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))))) |
28 | 27 | fveq1d 6893 |
. 2
β’ (π β ((π Dπ (π»βπ½))βπ) = ((π Dπ (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))))βπ)) |
29 | | etransclem17.n |
. . 3
β’ (π β π β
β0) |
30 | | elfzelz 13503 |
. . . . . . 7
β’ (π½ β (0...π) β π½ β β€) |
31 | 30 | zcnd 12669 |
. . . . . 6
β’ (π½ β (0...π) β π½ β β) |
32 | 23, 31 | syl 17 |
. . . . 5
β’ (π β π½ β β) |
33 | 32 | negcld 11560 |
. . . 4
β’ (π β -π½ β β) |
34 | | etransclem17.p |
. . . . . 6
β’ (π β π β β) |
35 | | nnm1nn0 12515 |
. . . . . 6
β’ (π β β β (π β 1) β
β0) |
36 | 34, 35 | syl 17 |
. . . . 5
β’ (π β (π β 1) β
β0) |
37 | 34 | nnnn0d 12534 |
. . . . 5
β’ (π β π β
β0) |
38 | 36, 37 | ifcld 4574 |
. . . 4
β’ (π β if(π½ = 0, (π β 1), π) β
β0) |
39 | | eqid 2732 |
. . . 4
β’ (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))) = (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))) |
40 | 2, 3, 33, 38, 39 | dvnxpaek 44743 |
. . 3
β’ ((π β§ π β β0) β ((π Dπ (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))))βπ) = (π₯ β π β¦ if(if(π½ = 0, (π β 1), π) < π, 0, (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ + -π½)β(if(π½ = 0, (π β 1), π) β π)))))) |
41 | 29, 40 | mpdan 685 |
. 2
β’ (π β ((π Dπ (π₯ β π β¦ ((π₯ + -π½)βif(π½ = 0, (π β 1), π))))βπ) = (π₯ β π β¦ if(if(π½ = 0, (π β 1), π) < π, 0, (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ + -π½)β(if(π½ = 0, (π β 1), π) β π)))))) |
42 | 32 | adantr 481 |
. . . . . . 7
β’ ((π β§ π₯ β π) β π½ β β) |
43 | 5, 42 | negsubd 11579 |
. . . . . 6
β’ ((π β§ π₯ β π) β (π₯ + -π½) = (π₯ β π½)) |
44 | 43 | oveq1d 7426 |
. . . . 5
β’ ((π β§ π₯ β π) β ((π₯ + -π½)β(if(π½ = 0, (π β 1), π) β π)) = ((π₯ β π½)β(if(π½ = 0, (π β 1), π) β π))) |
45 | 44 | oveq2d 7427 |
. . . 4
β’ ((π β§ π₯ β π) β (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ + -π½)β(if(π½ = 0, (π β 1), π) β π))) = (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ β π½)β(if(π½ = 0, (π β 1), π) β π)))) |
46 | 45 | ifeq2d 4548 |
. . 3
β’ ((π β§ π₯ β π) β if(if(π½ = 0, (π β 1), π) < π, 0, (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ + -π½)β(if(π½ = 0, (π β 1), π) β π)))) = if(if(π½ = 0, (π β 1), π) < π, 0, (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ β π½)β(if(π½ = 0, (π β 1), π) β π))))) |
47 | 46 | mpteq2dva 5248 |
. 2
β’ (π β (π₯ β π β¦ if(if(π½ = 0, (π β 1), π) < π, 0, (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ + -π½)β(if(π½ = 0, (π β 1), π) β π))))) = (π₯ β π β¦ if(if(π½ = 0, (π β 1), π) < π, 0, (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ β π½)β(if(π½ = 0, (π β 1), π) β π)))))) |
48 | 28, 41, 47 | 3eqtrd 2776 |
1
β’ (π β ((π Dπ (π»βπ½))βπ) = (π₯ β π β¦ if(if(π½ = 0, (π β 1), π) < π, 0, (((!βif(π½ = 0, (π β 1), π)) / (!β(if(π½ = 0, (π β 1), π) β π))) Β· ((π₯ β π½)β(if(π½ = 0, (π β 1), π) β π)))))) |