Proof of Theorem etransclem17
Step | Hyp | Ref
| Expression |
1 | | etransclem17.1 |
. . . . . 6
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
2 | | etransclem17.s |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
3 | | etransclem17.x |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
4 | 2, 3 | dvdmsscn 43477 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
5 | 4 | sselda 3921 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
6 | 5 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
7 | | elfzelz 13256 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
8 | 7 | zcnd 12427 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ) |
9 | 8 | ad2antlr 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → 𝑗 ∈ ℂ) |
10 | 6, 9 | negsubd 11338 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → (𝑥 + -𝑗) = (𝑥 − 𝑗)) |
11 | 10 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝑗) = (𝑥 + -𝑗)) |
12 | 11 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑥 ∈ 𝑋) → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
13 | 12 | mpteq2dva 5174 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
14 | 13 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))) |
15 | 1, 14 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))) |
16 | | negeq 11213 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → -𝑗 = -𝐽) |
17 | 16 | oveq2d 7291 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (𝑥 + -𝑗) = (𝑥 + -𝐽)) |
18 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (𝑗 = 0 ↔ 𝐽 = 0)) |
19 | 18 | ifbid 4482 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
20 | 17, 19 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
21 | 20 | mpteq2dv 5176 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
22 | 21 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 = 𝐽) → (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
23 | | etransclem17.J |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
24 | | mptexg 7097 |
. . . . . 6
⊢ (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
25 | 3, 24 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V) |
26 | 15, 22, 23, 25 | fvmptd 6882 |
. . . 4
⊢ (𝜑 → (𝐻‘𝐽) = (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))) |
27 | 26 | oveq2d 7291 |
. . 3
⊢ (𝜑 → (𝑆 D𝑛 (𝐻‘𝐽)) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))) |
28 | 27 | fveq1d 6776 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁)) |
29 | | etransclem17.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
30 | | elfzelz 13256 |
. . . . . . 7
⊢ (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ) |
31 | 30 | zcnd 12427 |
. . . . . 6
⊢ (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ) |
32 | 23, 31 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ ℂ) |
33 | 32 | negcld 11319 |
. . . 4
⊢ (𝜑 → -𝐽 ∈ ℂ) |
34 | | etransclem17.p |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ ℕ) |
35 | | nnm1nn0 12274 |
. . . . . 6
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
36 | 34, 35 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
37 | 34 | nnnn0d 12293 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
38 | 36, 37 | ifcld 4505 |
. . . 4
⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
39 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
40 | 2, 3, 33, 38, 39 | dvnxpaek 43483 |
. . 3
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
41 | 29, 40 | mpdan 684 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
42 | 32 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ ℂ) |
43 | 5, 42 | negsubd 11338 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 + -𝐽) = (𝑥 − 𝐽)) |
44 | 43 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) |
45 | 44 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) |
46 | 45 | ifeq2d 4479 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) |
47 | 46 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
48 | 28, 41, 47 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |