Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem17 Structured version   Visualization version   GIF version

Theorem etransclem17 46222
Description: The 𝑁-th derivative of 𝐻. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem17.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem17.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem17.p (𝜑𝑃 ∈ ℕ)
etransclem17.1 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem17.J (𝜑𝐽 ∈ (0...𝑀))
etransclem17.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem17 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem17
StepHypRef Expression
1 etransclem17.1 . . . . . 6 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
2 etransclem17.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ {ℝ, ℂ})
3 etransclem17.x . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
42, 3dvdmsscn 45907 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
54sselda 3943 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
65adantlr 715 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
7 elfzelz 13461 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
87zcnd 12615 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
98ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 ∈ ℂ)
106, 9negsubd 11515 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥 + -𝑗) = (𝑥𝑗))
1110eqcomd 2735 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥𝑗) = (𝑥 + -𝑗))
1211oveq1d 7384 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312mpteq2dva 5195 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
1413mpteq2dva 5195 . . . . . 6 (𝜑 → (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
151, 14eqtrid 2776 . . . . 5 (𝜑𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
16 negeq 11389 . . . . . . . . 9 (𝑗 = 𝐽 → -𝑗 = -𝐽)
1716oveq2d 7385 . . . . . . . 8 (𝑗 = 𝐽 → (𝑥 + -𝑗) = (𝑥 + -𝐽))
18 eqeq1 2733 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑗 = 0 ↔ 𝐽 = 0))
1918ifbid 4508 . . . . . . . 8 (𝑗 = 𝐽 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2017, 19oveq12d 7387 . . . . . . 7 (𝑗 = 𝐽 → ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2120mpteq2dv 5196 . . . . . 6 (𝑗 = 𝐽 → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2221adantl 481 . . . . 5 ((𝜑𝑗 = 𝐽) → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
23 etransclem17.J . . . . 5 (𝜑𝐽 ∈ (0...𝑀))
24 mptexg 7177 . . . . . 6 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
253, 24syl 17 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
2615, 22, 23, 25fvmptd 6957 . . . 4 (𝜑 → (𝐻𝐽) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2726oveq2d 7385 . . 3 (𝜑 → (𝑆 D𝑛 (𝐻𝐽)) = (𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))))
2827fveq1d 6842 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁))
29 etransclem17.n . . 3 (𝜑𝑁 ∈ ℕ0)
30 elfzelz 13461 . . . . . . 7 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ)
3130zcnd 12615 . . . . . 6 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ)
3223, 31syl 17 . . . . 5 (𝜑𝐽 ∈ ℂ)
3332negcld 11496 . . . 4 (𝜑 → -𝐽 ∈ ℂ)
34 etransclem17.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
35 nnm1nn0 12459 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3634, 35syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3734nnnn0d 12479 . . . . 5 (𝜑𝑃 ∈ ℕ0)
3836, 37ifcld 4531 . . . 4 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
39 eqid 2729 . . . 4 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
402, 3, 33, 38, 39dvnxpaek 45913 . . 3 ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4129, 40mpdan 687 . 2 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4232adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
435, 42negsubd 11515 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 + -𝐽) = (𝑥𝐽))
4443oveq1d 7384 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
4544oveq2d 7385 . . . 4 ((𝜑𝑥𝑋) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
4645ifeq2d 4505 . . 3 ((𝜑𝑥𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
4746mpteq2dva 5195 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4828, 41, 473eqtrd 2768 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  ifcif 4484  {cpr 4587   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  ...cfz 13444  cexp 14002  !cfa 14214  t crest 17359  TopOpenctopn 17360  fldccnfld 21240   D𝑛 cdvn 25741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-dvn 25745
This theorem is referenced by:  etransclem19  46224  etransclem20  46225  etransclem21  46226  etransclem22  46227
  Copyright terms: Public domain W3C validator