Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem22 Structured version   Visualization version   GIF version

Theorem etransclem22 42740
Description: The 𝑁-th derivative of 𝐻 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem22.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem22.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem22.p (𝜑𝑃 ∈ ℕ)
etransclem22.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem22.J (𝜑𝐽 ∈ (0...𝑀))
etransclem22.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem22 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) ∈ (𝑋cn→ℂ))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem22
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 etransclem22.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem22.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem22.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem22.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
5 etransclem22.J . . 3 (𝜑𝐽 ∈ (0...𝑀))
6 etransclem22.n . . 3 (𝜑𝑁 ∈ ℕ0)
71, 2, 3, 4, 5, 6etransclem17 42735 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
8 simpr 488 . . . . . 6 ((𝜑 ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
98iftrued 4456 . . . . 5 ((𝜑 ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0)
109mpteq2dv 5143 . . . 4 ((𝜑 ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ 0))
111, 2dvdmsscn 42420 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
12 0cnd 10619 . . . . . 6 (𝜑 → 0 ∈ ℂ)
13 ssid 3973 . . . . . . 7 ℂ ⊆ ℂ
1413a1i 11 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
1511, 12, 14constcncfg 42356 . . . . 5 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝑋cn→ℂ))
1615adantr 484 . . . 4 ((𝜑 ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝑋 ↦ 0) ∈ (𝑋cn→ℂ))
1710, 16eqeltrd 2916 . . 3 ((𝜑 ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) ∈ (𝑋cn→ℂ))
18 simpr 488 . . . . . 6 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
1918iffalsed 4459 . . . . 5 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
2019mpteq2dv 5143 . . . 4 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
21 nfv 1916 . . . . 5 𝑥(𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
2211, 14idcncfg 42357 . . . . . . 7 (𝜑 → (𝑥𝑋𝑥) ∈ (𝑋cn→ℂ))
235elfzelzd 12901 . . . . . . . . 9 (𝜑𝐽 ∈ ℤ)
2423zcnd 12074 . . . . . . . 8 (𝜑𝐽 ∈ ℂ)
2511, 24, 14constcncfg 42356 . . . . . . 7 (𝜑 → (𝑥𝑋𝐽) ∈ (𝑋cn→ℂ))
2622, 25subcncf 24038 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ (𝑥𝐽)) ∈ (𝑋cn→ℂ))
2726adantr 484 . . . . 5 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝑋 ↦ (𝑥𝐽)) ∈ (𝑋cn→ℂ))
2813a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ℂ ⊆ ℂ)
29 nnm1nn0 11924 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
303, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
313nnnn0d 11941 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
3230, 31ifcld 4493 . . . . . . . . . . 11 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
3332faccld 13638 . . . . . . . . . 10 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℕ)
3433nncnd 11639 . . . . . . . . 9 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
3534adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
3632nn0zd 12071 . . . . . . . . . . . . 13 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
376nn0zd 12071 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
3836, 37zsubcld 12078 . . . . . . . . . . . 12 (𝜑 → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
3938adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
406nn0red 11942 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
4140adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ∈ ℝ)
4232nn0red 11942 . . . . . . . . . . . . . 14 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
4342adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
4441, 43, 18nltled 10775 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
4543, 41subge0d 11215 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ↔ 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)))
4644, 45mpbird 260 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))
47 elnn0z 11980 . . . . . . . . . . 11 ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 ↔ ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ ∧ 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
4839, 46, 47sylanbrc 586 . . . . . . . . . 10 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
4948faccld 13638 . . . . . . . . 9 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℕ)
5049nncnd 11639 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
5149nnne0d 11673 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ≠ 0)
5235, 50, 51divcld 11401 . . . . . . 7 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
5328, 52, 28constcncfg 42356 . . . . . 6 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑦 ∈ ℂ ↦ ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ (ℂ–cn→ℂ))
54 expcncf 23520 . . . . . . 7 ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ (ℂ–cn→ℂ))
5548, 54syl 17 . . . . . 6 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑦 ∈ ℂ ↦ (𝑦↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ (ℂ–cn→ℂ))
5653, 55mulcncf 24039 . . . . 5 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑦 ∈ ℂ ↦ (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · (𝑦↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ (ℂ–cn→ℂ))
57 oveq1 7145 . . . . . 6 (𝑦 = (𝑥𝐽) → (𝑦↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
5857oveq2d 7154 . . . . 5 (𝑦 = (𝑥𝐽) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · (𝑦↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
5921, 27, 56, 28, 58cncfcompt2 23502 . . . 4 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝑋 ↦ (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ (𝑋cn→ℂ))
6020, 59eqeltrd 2916 . . 3 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) ∈ (𝑋cn→ℂ))
6117, 60pm2.61dan 812 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) ∈ (𝑋cn→ℂ))
627, 61eqeltrd 2916 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) ∈ (𝑋cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2115  wss 3918  ifcif 4448  {cpr 4550   class class class wbr 5047  cmpt 5127  cfv 6336  (class class class)co 7138  cc 10520  cr 10521  0cc0 10522  1c1 10523   · cmul 10527   < clt 10660  cle 10661  cmin 10855   / cdiv 11282  cn 11623  0cn0 11883  cz 11967  ...cfz 12883  cexp 13423  !cfa 13627  t crest 16683  TopOpenctopn 16684  fldccnfld 20531  cnccncf 23470   D𝑛 cdvn 24456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-icc 12731  df-fz 12884  df-fzo 13027  df-seq 13363  df-exp 13424  df-fac 13628  df-hash 13685  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-ip 16572  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-hom 16578  df-cco 16579  df-rest 16685  df-topn 16686  df-0g 16704  df-gsum 16705  df-topgen 16706  df-pt 16707  df-prds 16710  df-xrs 16764  df-qtop 16769  df-imas 16770  df-xps 16772  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-mulg 18214  df-cntz 18436  df-cmn 18897  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-cnfld 20532  df-top 21488  df-topon 21505  df-topsp 21527  df-bases 21540  df-cld 21613  df-ntr 21614  df-cls 21615  df-nei 21692  df-lp 21730  df-perf 21731  df-cn 21821  df-cnp 21822  df-haus 21909  df-tx 22156  df-hmeo 22349  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-xms 22916  df-ms 22917  df-tms 22918  df-cncf 23472  df-limc 24458  df-dv 24459  df-dvn 24460
This theorem is referenced by:  etransclem34  42752
  Copyright terms: Public domain W3C validator