Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem18 Structured version   Visualization version   GIF version

Theorem etransclem18 46267
Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem18.s (𝜑 → ℝ ∈ {ℝ, ℂ})
etransclem18.x (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
etransclem18.p (𝜑𝑃 ∈ ℕ)
etransclem18.m (𝜑𝑀 ∈ ℕ0)
etransclem18.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem18.a (𝜑𝐴 ∈ ℝ)
etransclem18.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
etransclem18 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝐹(𝑥,𝑗)

Proof of Theorem etransclem18
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 13473 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 ioombl 25600 . . 3 (𝐴(,)𝐵) ∈ dom vol
43a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5 ere 16125 . . . . . 6 e ∈ ℝ
65recni 11275 . . . . 5 e ∈ ℂ
76a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → e ∈ ℂ)
8 etransclem18.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
9 etransclem18.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
108, 9iccssred 13474 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1110sselda 3983 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1211recnd 11289 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
1312negcld 11607 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
147, 13cxpcld 26750 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
15 etransclem18.s . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 etransclem18.x . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1715, 16dvdmsscn 45951 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
18 etransclem18.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
19 etransclem18.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
2017, 18, 19etransclem8 46257 . . . . 5 (𝜑𝐹:ℝ⟶ℂ)
2120adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2221, 11ffvelcdmd 7105 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2314, 22mulcld 11281 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
24 eqidd 2738 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) = (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)))
25 oveq2 7439 . . . . . . . . 9 (𝑦 = -𝑥 → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2625adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 = -𝑥) → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2710, 17sstrd 3994 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2827sselda 3983 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
2928negcld 11607 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
306a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℂ → e ∈ ℂ)
31 negcl 11508 . . . . . . . . . 10 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
3230, 31cxpcld 26750 . . . . . . . . 9 (𝑥 ∈ ℂ → (e↑𝑐-𝑥) ∈ ℂ)
3328, 32syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
3424, 26, 29, 33fvmptd 7023 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥) = (e↑𝑐-𝑥))
3534eqcomd 2743 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) = ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥))
3635mpteq2dva 5242 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)))
37 epr 16244 . . . . . . . . 9 e ∈ ℝ+
38 mnfxr 11318 . . . . . . . . . . 11 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . 10 (e ∈ ℝ+ → -∞ ∈ ℝ*)
40 0red 11264 . . . . . . . . . 10 (e ∈ ℝ+ → 0 ∈ ℝ)
41 rpxr 13044 . . . . . . . . . 10 (e ∈ ℝ+ → e ∈ ℝ*)
42 rpgt0 13047 . . . . . . . . . 10 (e ∈ ℝ+ → 0 < e)
4339, 40, 41, 42gtnelioc 45504 . . . . . . . . 9 (e ∈ ℝ+ → ¬ e ∈ (-∞(,]0))
4437, 43ax-mp 5 . . . . . . . 8 ¬ e ∈ (-∞(,]0)
45 eldif 3961 . . . . . . . 8 (e ∈ (ℂ ∖ (-∞(,]0)) ↔ (e ∈ ℂ ∧ ¬ e ∈ (-∞(,]0)))
466, 44, 45mpbir2an 711 . . . . . . 7 e ∈ (ℂ ∖ (-∞(,]0))
47 cxpcncf2 45914 . . . . . . 7 (e ∈ (ℂ ∖ (-∞(,]0)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
4846, 47mp1i 13 . . . . . 6 (𝜑 → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
49 eqid 2737 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥)
5049negcncf 24948 . . . . . . 7 ((𝐴[,]𝐵) ⊆ ℂ → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5127, 50syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5248, 51cncfmpt1f 24940 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5336, 52eqeltrd 2841 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 ax-resscn 11212 . . . . . . . 8 ℝ ⊆ ℂ
5554a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ℝ ⊆ ℂ)
5618adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑃 ∈ ℕ)
57 etransclem18.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5857adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑀 ∈ ℕ0)
59 etransclem6 46255 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6019, 59eqtri 2765 . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6155, 56, 58, 60, 11etransclem13 46262 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
6261mpteq2dva 5242 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
63 fzfid 14014 . . . . . 6 (𝜑 → (0...𝑀) ∈ Fin)
64123adant3 1133 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
65 elfzelz 13564 . . . . . . . . . 10 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ)
6665zcnd 12723 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ)
67663ad2ant3 1136 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
6864, 67subcld 11620 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑘) ∈ ℂ)
69 nnm1nn0 12567 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
7018, 69syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℕ0)
7118nnnn0d 12587 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
7270, 71ifcld 4572 . . . . . . . 8 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
73723ad2ant1 1134 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
7468, 73expcld 14186 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
75 nfv 1914 . . . . . . 7 𝑥(𝜑𝑘 ∈ (0...𝑀))
76 ssid 4006 . . . . . . . . . . 11 ℂ ⊆ ℂ
7776a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
7827, 77idcncfg 45888 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7978adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8027adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → (𝐴[,]𝐵) ⊆ ℂ)
8166adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
8276a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → ℂ ⊆ ℂ)
8380, 81, 82constcncfg 45887 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8479, 83subcncf 25479 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
85 expcncf 24953 . . . . . . . . 9 (if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8672, 85syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8786adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
88 oveq1 7438 . . . . . . 7 (𝑦 = (𝑥𝑘) → (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
8975, 84, 87, 82, 88cncfcompt2 24934 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9027, 63, 74, 89fprodcncf 45915 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9162, 90eqeltrd 2841 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9253, 91mulcncf 25480 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
93 cniccibl 25876 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
948, 9, 92, 93syl3anc 1373 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
952, 4, 23, 94iblss 25840 1 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cdif 3948  wss 3951  ifcif 4525  {cpr 4628  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  -∞cmnf 11293  *cxr 11294  cmin 11492  -cneg 11493  cn 12266  0cn0 12526  +crp 13034  (,)cioo 13387  (,]cioc 13388  [,]cicc 13390  ...cfz 13547  cexp 14102  cprod 15939  eceu 16098  t crest 17465  TopOpenctopn 17466  fldccnfld 21364  cnccncf 24902  volcvol 25498  𝐿1cibl 25652  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-prod 15940  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-0p 25705  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  etransclem23  46272  etransclem46  46295
  Copyright terms: Public domain W3C validator