Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem18 Structured version   Visualization version   GIF version

Theorem etransclem18 45267
Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem18.s (𝜑 → ℝ ∈ {ℝ, ℂ})
etransclem18.x (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
etransclem18.p (𝜑𝑃 ∈ ℕ)
etransclem18.m (𝜑𝑀 ∈ ℕ0)
etransclem18.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem18.a (𝜑𝐴 ∈ ℝ)
etransclem18.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
etransclem18 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝐹(𝑥,𝑗)

Proof of Theorem etransclem18
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 13415 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 ioombl 25315 . . 3 (𝐴(,)𝐵) ∈ dom vol
43a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5 ere 16037 . . . . . 6 e ∈ ℝ
65recni 11233 . . . . 5 e ∈ ℂ
76a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → e ∈ ℂ)
8 etransclem18.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
9 etransclem18.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
108, 9iccssred 13416 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1110sselda 3982 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1211recnd 11247 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
1312negcld 11563 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
147, 13cxpcld 26453 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
15 etransclem18.s . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 etransclem18.x . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1715, 16dvdmsscn 44951 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
18 etransclem18.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
19 etransclem18.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
2017, 18, 19etransclem8 45257 . . . . 5 (𝜑𝐹:ℝ⟶ℂ)
2120adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2221, 11ffvelcdmd 7087 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2314, 22mulcld 11239 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
24 eqidd 2732 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) = (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)))
25 oveq2 7420 . . . . . . . . 9 (𝑦 = -𝑥 → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2625adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 = -𝑥) → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2710, 17sstrd 3992 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2827sselda 3982 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
2928negcld 11563 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
306a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℂ → e ∈ ℂ)
31 negcl 11465 . . . . . . . . . 10 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
3230, 31cxpcld 26453 . . . . . . . . 9 (𝑥 ∈ ℂ → (e↑𝑐-𝑥) ∈ ℂ)
3328, 32syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
3424, 26, 29, 33fvmptd 7005 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥) = (e↑𝑐-𝑥))
3534eqcomd 2737 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) = ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥))
3635mpteq2dva 5248 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)))
37 epr 16156 . . . . . . . . 9 e ∈ ℝ+
38 mnfxr 11276 . . . . . . . . . . 11 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . 10 (e ∈ ℝ+ → -∞ ∈ ℝ*)
40 0red 11222 . . . . . . . . . 10 (e ∈ ℝ+ → 0 ∈ ℝ)
41 rpxr 12988 . . . . . . . . . 10 (e ∈ ℝ+ → e ∈ ℝ*)
42 rpgt0 12991 . . . . . . . . . 10 (e ∈ ℝ+ → 0 < e)
4339, 40, 41, 42gtnelioc 44503 . . . . . . . . 9 (e ∈ ℝ+ → ¬ e ∈ (-∞(,]0))
4437, 43ax-mp 5 . . . . . . . 8 ¬ e ∈ (-∞(,]0)
45 eldif 3958 . . . . . . . 8 (e ∈ (ℂ ∖ (-∞(,]0)) ↔ (e ∈ ℂ ∧ ¬ e ∈ (-∞(,]0)))
466, 44, 45mpbir2an 708 . . . . . . 7 e ∈ (ℂ ∖ (-∞(,]0))
47 cxpcncf2 44914 . . . . . . 7 (e ∈ (ℂ ∖ (-∞(,]0)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
4846, 47mp1i 13 . . . . . 6 (𝜑 → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
49 eqid 2731 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥)
5049negcncf 24663 . . . . . . 7 ((𝐴[,]𝐵) ⊆ ℂ → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5127, 50syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5248, 51cncfmpt1f 24655 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5336, 52eqeltrd 2832 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 ax-resscn 11171 . . . . . . . 8 ℝ ⊆ ℂ
5554a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ℝ ⊆ ℂ)
5618adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑃 ∈ ℕ)
57 etransclem18.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5857adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑀 ∈ ℕ0)
59 etransclem6 45255 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6019, 59eqtri 2759 . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6155, 56, 58, 60, 11etransclem13 45262 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
6261mpteq2dva 5248 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
63 fzfid 13943 . . . . . 6 (𝜑 → (0...𝑀) ∈ Fin)
64123adant3 1131 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
65 elfzelz 13506 . . . . . . . . . 10 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ)
6665zcnd 12672 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ)
67663ad2ant3 1134 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
6864, 67subcld 11576 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑘) ∈ ℂ)
69 nnm1nn0 12518 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
7018, 69syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℕ0)
7118nnnn0d 12537 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
7270, 71ifcld 4574 . . . . . . . 8 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
73723ad2ant1 1132 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
7468, 73expcld 14116 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
75 nfv 1916 . . . . . . 7 𝑥(𝜑𝑘 ∈ (0...𝑀))
76 ssid 4004 . . . . . . . . . . 11 ℂ ⊆ ℂ
7776a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
7827, 77idcncfg 44888 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7978adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8027adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → (𝐴[,]𝐵) ⊆ ℂ)
8166adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
8276a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → ℂ ⊆ ℂ)
8380, 81, 82constcncfg 44887 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8479, 83subcncf 25194 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
85 expcncf 24668 . . . . . . . . 9 (if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8672, 85syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8786adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
88 oveq1 7419 . . . . . . 7 (𝑦 = (𝑥𝑘) → (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
8975, 84, 87, 82, 88cncfcompt2 24649 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9027, 63, 74, 89fprodcncf 44915 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9162, 90eqeltrd 2832 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9253, 91mulcncf 25195 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
93 cniccibl 25591 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
948, 9, 92, 93syl3anc 1370 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
952, 4, 23, 94iblss 25555 1 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cdif 3945  wss 3948  ifcif 4528  {cpr 4630  cmpt 5231  dom cdm 5676  wf 6539  cfv 6543  (class class class)co 7412  cc 11112  cr 11113  0cc0 11114  1c1 11115   · cmul 11119  -∞cmnf 11251  *cxr 11252  cmin 11449  -cneg 11450  cn 12217  0cn0 12477  +crp 12979  (,)cioo 13329  (,]cioc 13330  [,]cicc 13332  ...cfz 13489  cexp 14032  cprod 15854  eceu 16011  t crest 17371  TopOpenctopn 17372  fldccnfld 21145  cnccncf 24617  volcvol 25213  𝐿1cibl 25367  𝑐ccxp 26301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cc 10434  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192  ax-addf 11193  ax-mulf 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-oadd 8474  df-omul 8475  df-er 8707  df-map 8826  df-pm 8827  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-fi 9410  df-sup 9441  df-inf 9442  df-oi 9509  df-dju 9900  df-card 9938  df-acn 9941  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15019  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-sum 15638  df-prod 15855  df-ef 16016  df-e 16017  df-sin 16018  df-cos 16019  df-tan 16020  df-pi 16021  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-cmp 23112  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-ovol 25214  df-vol 25215  df-mbf 25369  df-itg1 25370  df-itg2 25371  df-ibl 25372  df-0p 25420  df-limc 25616  df-dv 25617  df-log 26302  df-cxp 26303
This theorem is referenced by:  etransclem23  45272  etransclem46  45295
  Copyright terms: Public domain W3C validator