Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem18 Structured version   Visualization version   GIF version

Theorem etransclem18 41038
Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem18.s (𝜑 → ℝ ∈ {ℝ, ℂ})
etransclem18.x (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
etransclem18.p (𝜑𝑃 ∈ ℕ)
etransclem18.m (𝜑𝑀 ∈ ℕ0)
etransclem18.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem18.a (𝜑𝐴 ∈ ℝ)
etransclem18.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
etransclem18 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝐹(𝑥,𝑗)

Proof of Theorem etransclem18
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 12461 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 ioombl 23623 . . 3 (𝐴(,)𝐵) ∈ dom vol
43a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5 ere 15103 . . . . . 6 e ∈ ℝ
65recni 10308 . . . . 5 e ∈ ℂ
76a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → e ∈ ℂ)
8 etransclem18.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
9 etransclem18.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
108, 9iccssred 40301 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1110sselda 3761 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1211recnd 10322 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
1312negcld 10633 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
147, 13cxpcld 24745 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
15 etransclem18.s . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 etransclem18.x . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1715, 16dvdmsscn 40721 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
18 etransclem18.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
19 etransclem18.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
2017, 18, 19etransclem8 41028 . . . . 5 (𝜑𝐹:ℝ⟶ℂ)
2120adantr 472 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2221, 11ffvelrnd 6550 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2314, 22mulcld 10314 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
24 eqidd 2766 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) = (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)))
25 oveq2 6850 . . . . . . . . 9 (𝑦 = -𝑥 → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2625adantl 473 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 = -𝑥) → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2710, 17sstrd 3771 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2827sselda 3761 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
2928negcld 10633 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
306a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℂ → e ∈ ℂ)
31 negcl 10535 . . . . . . . . . 10 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
3230, 31cxpcld 24745 . . . . . . . . 9 (𝑥 ∈ ℂ → (e↑𝑐-𝑥) ∈ ℂ)
3328, 32syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
3424, 26, 29, 33fvmptd 6477 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥) = (e↑𝑐-𝑥))
3534eqcomd 2771 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) = ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥))
3635mpteq2dva 4903 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)))
37 epr 15220 . . . . . . . . 9 e ∈ ℝ+
38 mnfxr 10350 . . . . . . . . . . 11 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . 10 (e ∈ ℝ+ → -∞ ∈ ℝ*)
40 0red 10297 . . . . . . . . . 10 (e ∈ ℝ+ → 0 ∈ ℝ)
41 rpxr 12039 . . . . . . . . . 10 (e ∈ ℝ+ → e ∈ ℝ*)
42 rpgt0 12042 . . . . . . . . . 10 (e ∈ ℝ+ → 0 < e)
4339, 40, 41, 42gtnelioc 40286 . . . . . . . . 9 (e ∈ ℝ+ → ¬ e ∈ (-∞(,]0))
4437, 43ax-mp 5 . . . . . . . 8 ¬ e ∈ (-∞(,]0)
45 eldif 3742 . . . . . . . 8 (e ∈ (ℂ ∖ (-∞(,]0)) ↔ (e ∈ ℂ ∧ ¬ e ∈ (-∞(,]0)))
466, 44, 45mpbir2an 702 . . . . . . 7 e ∈ (ℂ ∖ (-∞(,]0))
47 cxpcncf2 40683 . . . . . . 7 (e ∈ (ℂ ∖ (-∞(,]0)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
4846, 47mp1i 13 . . . . . 6 (𝜑 → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
49 eqid 2765 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥)
5049negcncf 23000 . . . . . . 7 ((𝐴[,]𝐵) ⊆ ℂ → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5127, 50syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5248, 51cncfmpt1f 22995 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5336, 52eqeltrd 2844 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 ax-resscn 10246 . . . . . . . 8 ℝ ⊆ ℂ
5554a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ℝ ⊆ ℂ)
5618adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑃 ∈ ℕ)
57 etransclem18.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5857adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑀 ∈ ℕ0)
59 etransclem6 41026 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6019, 59eqtri 2787 . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6155, 56, 58, 60, 11etransclem13 41033 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
6261mpteq2dva 4903 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
63 fzfid 12980 . . . . . 6 (𝜑 → (0...𝑀) ∈ Fin)
64123adant3 1162 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
65 elfzelz 12549 . . . . . . . . . 10 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ)
6665zcnd 11730 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ)
67663ad2ant3 1165 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
6864, 67subcld 10646 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑘) ∈ ℂ)
69 nnm1nn0 11581 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
7018, 69syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℕ0)
7118nnnn0d 11598 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
7270, 71ifcld 4288 . . . . . . . 8 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
73723ad2ant1 1163 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
7468, 73expcld 13215 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
75 nfv 2009 . . . . . . 7 𝑥(𝜑𝑘 ∈ (0...𝑀))
76 ssid 3783 . . . . . . . . . . 11 ℂ ⊆ ℂ
7776a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
7827, 77idcncfg 40655 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7978adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8027adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → (𝐴[,]𝐵) ⊆ ℂ)
8166adantl 473 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
8276a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → ℂ ⊆ ℂ)
8380, 81, 82constcncfg 40654 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8479, 83subcncf 40652 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
85 expcncf 23004 . . . . . . . . 9 (if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8672, 85syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8786adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
88 oveq1 6849 . . . . . . 7 (𝑦 = (𝑥𝑘) → (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
8975, 84, 87, 82, 88cncfcompt2 40682 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9027, 63, 74, 89fprodcncf 40684 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9162, 90eqeltrd 2844 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9253, 91mulcncf 23504 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
93 cniccibl 23898 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
948, 9, 92, 93syl3anc 1490 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
952, 4, 23, 94iblss 23862 1 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  cdif 3729  wss 3732  ifcif 4243  {cpr 4336  cmpt 4888  dom cdm 5277  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   · cmul 10194  -∞cmnf 10326  *cxr 10327  cmin 10520  -cneg 10521  cn 11274  0cn0 11538  +crp 12028  (,)cioo 12377  (,]cioc 12378  [,]cicc 12380  ...cfz 12533  cexp 13067  cprod 14920  eceu 15077  t crest 16349  TopOpenctopn 16350  fldccnfld 20019  cnccncf 22958  volcvol 23521  𝐿1cibl 23675  𝑐ccxp 24593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-disj 4778  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-ofr 7096  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14094  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-limsup 14489  df-clim 14506  df-rlim 14507  df-sum 14704  df-prod 14921  df-ef 15082  df-e 15083  df-sin 15084  df-cos 15085  df-tan 15086  df-pi 15087  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-ovol 23522  df-vol 23523  df-mbf 23677  df-itg1 23678  df-itg2 23679  df-ibl 23680  df-0p 23728  df-limc 23921  df-dv 23922  df-log 24594  df-cxp 24595
This theorem is referenced by:  etransclem23  41043  etransclem46  41066
  Copyright terms: Public domain W3C validator