Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem18 Structured version   Visualization version   GIF version

Theorem etransclem18 43764
Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem18.s (𝜑 → ℝ ∈ {ℝ, ℂ})
etransclem18.x (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
etransclem18.p (𝜑𝑃 ∈ ℕ)
etransclem18.m (𝜑𝑀 ∈ ℕ0)
etransclem18.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem18.a (𝜑𝐴 ∈ ℝ)
etransclem18.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
etransclem18 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝐹(𝑥,𝑗)

Proof of Theorem etransclem18
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 13164 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 ioombl 24727 . . 3 (𝐴(,)𝐵) ∈ dom vol
43a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5 ere 15796 . . . . . 6 e ∈ ℝ
65recni 10990 . . . . 5 e ∈ ℂ
76a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → e ∈ ℂ)
8 etransclem18.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
9 etransclem18.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
108, 9iccssred 13165 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1110sselda 3926 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1211recnd 11004 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
1312negcld 11319 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
147, 13cxpcld 25861 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
15 etransclem18.s . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 etransclem18.x . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1715, 16dvdmsscn 43448 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
18 etransclem18.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
19 etransclem18.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
2017, 18, 19etransclem8 43754 . . . . 5 (𝜑𝐹:ℝ⟶ℂ)
2120adantr 481 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2221, 11ffvelrnd 6959 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2314, 22mulcld 10996 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
24 eqidd 2741 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) = (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)))
25 oveq2 7279 . . . . . . . . 9 (𝑦 = -𝑥 → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2625adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 = -𝑥) → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2710, 17sstrd 3936 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2827sselda 3926 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
2928negcld 11319 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
306a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℂ → e ∈ ℂ)
31 negcl 11221 . . . . . . . . . 10 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
3230, 31cxpcld 25861 . . . . . . . . 9 (𝑥 ∈ ℂ → (e↑𝑐-𝑥) ∈ ℂ)
3328, 32syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
3424, 26, 29, 33fvmptd 6879 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥) = (e↑𝑐-𝑥))
3534eqcomd 2746 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) = ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥))
3635mpteq2dva 5179 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)))
37 epr 15915 . . . . . . . . 9 e ∈ ℝ+
38 mnfxr 11033 . . . . . . . . . . 11 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . 10 (e ∈ ℝ+ → -∞ ∈ ℝ*)
40 0red 10979 . . . . . . . . . 10 (e ∈ ℝ+ → 0 ∈ ℝ)
41 rpxr 12738 . . . . . . . . . 10 (e ∈ ℝ+ → e ∈ ℝ*)
42 rpgt0 12741 . . . . . . . . . 10 (e ∈ ℝ+ → 0 < e)
4339, 40, 41, 42gtnelioc 43000 . . . . . . . . 9 (e ∈ ℝ+ → ¬ e ∈ (-∞(,]0))
4437, 43ax-mp 5 . . . . . . . 8 ¬ e ∈ (-∞(,]0)
45 eldif 3902 . . . . . . . 8 (e ∈ (ℂ ∖ (-∞(,]0)) ↔ (e ∈ ℂ ∧ ¬ e ∈ (-∞(,]0)))
466, 44, 45mpbir2an 708 . . . . . . 7 e ∈ (ℂ ∖ (-∞(,]0))
47 cxpcncf2 43411 . . . . . . 7 (e ∈ (ℂ ∖ (-∞(,]0)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
4846, 47mp1i 13 . . . . . 6 (𝜑 → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
49 eqid 2740 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥)
5049negcncf 24083 . . . . . . 7 ((𝐴[,]𝐵) ⊆ ℂ → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5127, 50syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5248, 51cncfmpt1f 24075 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5336, 52eqeltrd 2841 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 ax-resscn 10929 . . . . . . . 8 ℝ ⊆ ℂ
5554a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ℝ ⊆ ℂ)
5618adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑃 ∈ ℕ)
57 etransclem18.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5857adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑀 ∈ ℕ0)
59 etransclem6 43752 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6019, 59eqtri 2768 . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6155, 56, 58, 60, 11etransclem13 43759 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
6261mpteq2dva 5179 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
63 fzfid 13691 . . . . . 6 (𝜑 → (0...𝑀) ∈ Fin)
64123adant3 1131 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
65 elfzelz 13255 . . . . . . . . . 10 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ)
6665zcnd 12426 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ)
67663ad2ant3 1134 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
6864, 67subcld 11332 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑘) ∈ ℂ)
69 nnm1nn0 12274 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
7018, 69syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℕ0)
7118nnnn0d 12293 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
7270, 71ifcld 4511 . . . . . . . 8 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
73723ad2ant1 1132 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
7468, 73expcld 13862 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
75 nfv 1921 . . . . . . 7 𝑥(𝜑𝑘 ∈ (0...𝑀))
76 ssid 3948 . . . . . . . . . . 11 ℂ ⊆ ℂ
7776a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
7827, 77idcncfg 43385 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7978adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8027adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → (𝐴[,]𝐵) ⊆ ℂ)
8166adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
8276a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → ℂ ⊆ ℂ)
8380, 81, 82constcncfg 43384 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8479, 83subcncf 24607 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
85 expcncf 24087 . . . . . . . . 9 (if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8672, 85syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8786adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
88 oveq1 7278 . . . . . . 7 (𝑦 = (𝑥𝑘) → (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
8975, 84, 87, 82, 88cncfcompt2 24069 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9027, 63, 74, 89fprodcncf 43412 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9162, 90eqeltrd 2841 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9253, 91mulcncf 24608 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
93 cniccibl 25003 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
948, 9, 92, 93syl3anc 1370 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
952, 4, 23, 94iblss 24967 1 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  cdif 3889  wss 3892  ifcif 4465  {cpr 4569  cmpt 5162  dom cdm 5590  wf 6428  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   · cmul 10877  -∞cmnf 11008  *cxr 11009  cmin 11205  -cneg 11206  cn 11973  0cn0 12233  +crp 12729  (,)cioo 13078  (,]cioc 13079  [,]cicc 13081  ...cfz 13238  cexp 13780  cprod 15613  eceu 15770  t crest 17129  TopOpenctopn 17130  fldccnfld 20595  cnccncf 24037  volcvol 24625  𝐿1cibl 24779  𝑐ccxp 25709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-ofr 7528  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-omul 8293  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-dju 9660  df-card 9698  df-acn 9701  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-prod 15614  df-ef 15775  df-e 15776  df-sin 15777  df-cos 15778  df-tan 15779  df-pi 15780  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-cmp 22536  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-ovol 24626  df-vol 24627  df-mbf 24781  df-itg1 24782  df-itg2 24783  df-ibl 24784  df-0p 24832  df-limc 25028  df-dv 25029  df-log 25710  df-cxp 25711
This theorem is referenced by:  etransclem23  43769  etransclem46  43792
  Copyright terms: Public domain W3C validator