Proof of Theorem etransclem21
| Step | Hyp | Ref
| Expression |
| 1 | | etransclem21.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 2 | | etransclem21.x |
. . 3
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 3 | | etransclem21.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4 | | etransclem21.h |
. . 3
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| 5 | | etransclem21.j |
. . 3
⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| 6 | | etransclem21.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 7 | 1, 2, 3, 4, 5, 6 | etransclem17 46266 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
| 8 | | oveq1 7438 |
. . . . . 6
⊢ (𝑥 = 𝑌 → (𝑥 − 𝐽) = (𝑌 − 𝐽)) |
| 9 | 8 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 = 𝑌 → ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) |
| 10 | 9 | oveq2d 7447 |
. . . 4
⊢ (𝑥 = 𝑌 → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) |
| 11 | 10 | ifeq2d 4546 |
. . 3
⊢ (𝑥 = 𝑌 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) |
| 12 | 11 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝑌) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) |
| 13 | | etransclem21.y |
. 2
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
| 14 | | 0cnd 11254 |
. . 3
⊢ ((𝜑 ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ∈ ℂ) |
| 15 | | nnm1nn0 12567 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
| 16 | 3, 15 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
| 17 | 3 | nnnn0d 12587 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 18 | 16, 17 | ifcld 4572 |
. . . . . . . 8
⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
| 19 | 18 | faccld 14323 |
. . . . . . 7
⊢ (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℕ) |
| 20 | 19 | nncnd 12282 |
. . . . . 6
⊢ (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
| 22 | 18 | nn0zd 12639 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℤ) |
| 23 | 6 | nn0zd 12639 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | 22, 23 | zsubcld 12727 |
. . . . . . . . 9
⊢ (𝜑 → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ) |
| 25 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ) |
| 26 | 6 | nn0red 12588 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 27 | 26 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ∈ ℝ) |
| 28 | 18 | nn0red 12588 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
| 29 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
| 30 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) |
| 31 | 27, 29, 30 | nltled 11411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
| 32 | 29, 27 | subge0d 11853 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ↔ 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
| 33 | 31, 32 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) |
| 34 | | elnn0z 12626 |
. . . . . . . 8
⊢
((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 ↔
((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ ∧ 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) |
| 35 | 25, 33, 34 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈
ℕ0) |
| 36 | 35 | faccld 14323 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℕ) |
| 37 | 36 | nncnd 12282 |
. . . . 5
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ) |
| 38 | 36 | nnne0d 12316 |
. . . . 5
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ≠ 0) |
| 39 | 21, 37, 38 | divcld 12043 |
. . . 4
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ) |
| 40 | 1, 2 | dvdmsscn 45951 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 41 | 40, 13 | sseldd 3984 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ℂ) |
| 42 | 5 | elfzelzd 13565 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 43 | 42 | zcnd 12723 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 44 | 41, 43 | subcld 11620 |
. . . . . 6
⊢ (𝜑 → (𝑌 − 𝐽) ∈ ℂ) |
| 45 | 44 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑌 − 𝐽) ∈ ℂ) |
| 46 | 45, 35 | expcld 14186 |
. . . 4
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ) |
| 47 | 39, 46 | mulcld 11281 |
. . 3
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ) |
| 48 | 14, 47 | ifclda 4561 |
. 2
⊢ (𝜑 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ) |
| 49 | 7, 12, 13, 48 | fvmptd 7023 |
1
⊢ (𝜑 → (((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁)‘𝑌) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) |