Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem21 Structured version   Visualization version   GIF version

Theorem etransclem21 42539
Description: The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem21.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem21.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem21.p (𝜑𝑃 ∈ ℕ)
etransclem21.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem21.j (𝜑𝐽 ∈ (0...𝑀))
etransclem21.n (𝜑𝑁 ∈ ℕ0)
etransclem21.y (𝜑𝑌𝑋)
Assertion
Ref Expression
etransclem21 (𝜑 → (((𝑆 D𝑛 (𝐻𝐽))‘𝑁)‘𝑌) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝑥,𝑌   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)   𝑌(𝑗)

Proof of Theorem etransclem21
StepHypRef Expression
1 etransclem21.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 etransclem21.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3 etransclem21.p . . 3 (𝜑𝑃 ∈ ℕ)
4 etransclem21.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
5 etransclem21.j . . 3 (𝜑𝐽 ∈ (0...𝑀))
6 etransclem21.n . . 3 (𝜑𝑁 ∈ ℕ0)
71, 2, 3, 4, 5, 6etransclem17 42535 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
8 oveq1 7162 . . . . . 6 (𝑥 = 𝑌 → (𝑥𝐽) = (𝑌𝐽))
98oveq1d 7170 . . . . 5 (𝑥 = 𝑌 → ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
109oveq2d 7171 . . . 4 (𝑥 = 𝑌 → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
1110ifeq2d 4485 . . 3 (𝑥 = 𝑌 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
1211adantl 484 . 2 ((𝜑𝑥 = 𝑌) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
13 etransclem21.y . 2 (𝜑𝑌𝑋)
14 0cnd 10633 . . 3 ((𝜑 ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ∈ ℂ)
15 nnm1nn0 11937 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
163, 15syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℕ0)
173nnnn0d 11954 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
1816, 17ifcld 4511 . . . . . . . 8 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
1918faccld 13643 . . . . . . 7 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℕ)
2019nncnd 11653 . . . . . 6 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
2120adantr 483 . . . . 5 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
2218nn0zd 12084 . . . . . . . . . 10 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
236nn0zd 12084 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2422, 23zsubcld 12091 . . . . . . . . 9 (𝜑 → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
2524adantr 483 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
266nn0red 11955 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
2726adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ∈ ℝ)
2818nn0red 11955 . . . . . . . . . . 11 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
2928adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
30 simpr 487 . . . . . . . . . 10 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
3127, 29, 30nltled 10789 . . . . . . . . 9 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
3229, 27subge0d 11229 . . . . . . . . 9 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ↔ 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)))
3331, 32mpbird 259 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))
34 elnn0z 11993 . . . . . . . 8 ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 ↔ ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ ∧ 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
3525, 33, 34sylanbrc 585 . . . . . . 7 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
3635faccld 13643 . . . . . 6 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℕ)
3736nncnd 11653 . . . . 5 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
3836nnne0d 11686 . . . . 5 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ≠ 0)
3921, 37, 38divcld 11415 . . . 4 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
401, 2dvdmsscn 42219 . . . . . . . 8 (𝜑𝑋 ⊆ ℂ)
4140, 13sseldd 3967 . . . . . . 7 (𝜑𝑌 ∈ ℂ)
425elfzelzd 41580 . . . . . . . 8 (𝜑𝐽 ∈ ℤ)
4342zcnd 12087 . . . . . . 7 (𝜑𝐽 ∈ ℂ)
4441, 43subcld 10996 . . . . . 6 (𝜑 → (𝑌𝐽) ∈ ℂ)
4544adantr 483 . . . . 5 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑌𝐽) ∈ ℂ)
4645, 35expcld 13509 . . . 4 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
4739, 46mulcld 10660 . . 3 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
4814, 47ifclda 4500 . 2 (𝜑 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
497, 12, 13, 48fvmptd 6774 1 (𝜑 → (((𝑆 D𝑛 (𝐻𝐽))‘𝑁)‘𝑌) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  ifcif 4466  {cpr 4568   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  0cn0 11896  cz 11980  ...cfz 12891  cexp 13428  !cfa 13632  t crest 16693  TopOpenctopn 16694  fldccnfld 20544   D𝑛 cdvn 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-fac 13633  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-dvn 24465
This theorem is referenced by:  etransclem27  42545  etransclem31  42549
  Copyright terms: Public domain W3C validator