Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem20 Structured version   Visualization version   GIF version

Theorem etransclem20 43263
 Description: 𝐻 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem20.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem20.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem20.p (𝜑𝑃 ∈ ℕ)
etransclem20.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem20.J (𝜑𝐽 ∈ (0...𝑀))
etransclem20.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem20 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ)
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem20
StepHypRef Expression
1 iftrue 4427 . . . . . 6 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0)
2 0cnd 10673 . . . . . 6 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → 0 ∈ ℂ)
31, 2eqeltrd 2853 . . . . 5 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
43adantl 486 . . . 4 (((𝜑𝑥𝑋) ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
5 simpr 489 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
65iffalsed 4432 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
7 etransclem20.p . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
8 nnm1nn0 11976 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
107nnnn0d 11995 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
119, 10ifcld 4467 . . . . . . . . . . 11 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
1211faccld 13695 . . . . . . . . . 10 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℕ)
1312nncnd 11691 . . . . . . . . 9 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
1413adantr 485 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
1511nn0zd 12125 . . . . . . . . . . . . 13 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
16 etransclem20.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
1716nn0zd 12125 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1815, 17zsubcld 12132 . . . . . . . . . . . 12 (𝜑 → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
1918adantr 485 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
2016nn0red 11996 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
2120adantr 485 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ∈ ℝ)
2211nn0red 11996 . . . . . . . . . . . . . 14 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
2322adantr 485 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
24 simpr 489 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
2521, 23, 24nltled 10829 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
2623, 21subge0d 11269 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ↔ 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2725, 26mpbird 260 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))
28 elnn0z 12034 . . . . . . . . . . 11 ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 ↔ ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ ∧ 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
2919, 27, 28sylanbrc 587 . . . . . . . . . 10 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
3029faccld 13695 . . . . . . . . 9 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℕ)
3130nncnd 11691 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
3230nnne0d 11725 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ≠ 0)
3314, 31, 32divcld 11455 . . . . . . 7 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
3433adantlr 715 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
35 etransclem20.s . . . . . . . . . . 11 (𝜑𝑆 ∈ {ℝ, ℂ})
36 etransclem20.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3735, 36dvdmsscn 42945 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
3837sselda 3893 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
39 etransclem20.J . . . . . . . . . . 11 (𝜑𝐽 ∈ (0...𝑀))
40 elfzelz 12957 . . . . . . . . . . . 12 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ)
4140zcnd 12128 . . . . . . . . . . 11 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ)
4239, 41syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℂ)
4342adantr 485 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
4438, 43subcld 11036 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝐽) ∈ ℂ)
4544adantr 485 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝐽) ∈ ℂ)
4629adantlr 715 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
4745, 46expcld 13561 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
4834, 47mulcld 10700 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
496, 48eqeltrd 2853 . . . 4 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
504, 49pm2.61dan 813 . . 3 ((𝜑𝑥𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
51 eqid 2759 . . 3 (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
5250, 51fmptd 6870 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ)
53 etransclem20.h . . . 4 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
5435, 36, 7, 53, 39, 16etransclem17 43260 . . 3 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
5554feq1d 6484 . 2 (𝜑 → (((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ ↔ (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ))
5652, 55mpbird 260 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ifcif 4421  {cpr 4525   class class class wbr 5033   ↦ cmpt 5113  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151  ℂcc 10574  ℝcr 10575  0cc0 10576  1c1 10577   · cmul 10581   < clt 10714   ≤ cle 10715   − cmin 10909   / cdiv 11336  ℕcn 11675  ℕ0cn0 11935  ℤcz 12021  ...cfz 12940  ↑cexp 13480  !cfa 13684   ↾t crest 16753  TopOpenctopn 16754  ℂfldccnfld 20167   D𝑛 cdvn 24564 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9138  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654  ax-addf 10655  ax-mulf 10656 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-fi 8909  df-sup 8940  df-inf 8941  df-oi 9008  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-q 12390  df-rp 12432  df-xneg 12549  df-xadd 12550  df-xmul 12551  df-icc 12787  df-fz 12941  df-fzo 13084  df-seq 13420  df-exp 13481  df-fac 13685  df-hash 13742  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-rest 16755  df-topn 16756  df-0g 16774  df-gsum 16775  df-topgen 16776  df-pt 16777  df-prds 16780  df-xrs 16834  df-qtop 16839  df-imas 16840  df-xps 16842  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-submnd 18024  df-mulg 18293  df-cntz 18515  df-cmn 18976  df-psmet 20159  df-xmet 20160  df-met 20161  df-bl 20162  df-mopn 20163  df-fbas 20164  df-fg 20165  df-cnfld 20168  df-top 21595  df-topon 21612  df-topsp 21634  df-bases 21647  df-cld 21720  df-ntr 21721  df-cls 21722  df-nei 21799  df-lp 21837  df-perf 21838  df-cn 21928  df-cnp 21929  df-haus 22016  df-tx 22263  df-hmeo 22456  df-fil 22547  df-fm 22639  df-flim 22640  df-flf 22641  df-xms 23023  df-ms 23024  df-tms 23025  df-cncf 23580  df-limc 24566  df-dv 24567  df-dvn 24568 This theorem is referenced by:  etransclem27  43270  etransclem29  43272  etransclem31  43274  etransclem32  43275  etransclem33  43276  etransclem34  43277
 Copyright terms: Public domain W3C validator