Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem20 Structured version   Visualization version   GIF version

Theorem etransclem20 42081
Description: 𝐻 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem20.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem20.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem20.p (𝜑𝑃 ∈ ℕ)
etransclem20.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem20.J (𝜑𝐽 ∈ (0...𝑀))
etransclem20.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem20 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ)
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem20
StepHypRef Expression
1 iftrue 4387 . . . . . 6 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0)
2 0cnd 10480 . . . . . 6 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → 0 ∈ ℂ)
31, 2eqeltrd 2883 . . . . 5 (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
43adantl 482 . . . 4 (((𝜑𝑥𝑋) ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
5 simpr 485 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
65iffalsed 4392 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
7 etransclem20.p . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
8 nnm1nn0 11786 . . . . . . . . . . . . 13 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑃 − 1) ∈ ℕ0)
107nnnn0d 11803 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ0)
119, 10ifcld 4426 . . . . . . . . . . 11 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
1211faccld 13494 . . . . . . . . . 10 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℕ)
1312nncnd 11502 . . . . . . . . 9 (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
1413adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
1511nn0zd 11934 . . . . . . . . . . . . 13 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℤ)
16 etransclem20.n . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
1716nn0zd 11934 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
1815, 17zsubcld 11941 . . . . . . . . . . . 12 (𝜑 → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
1918adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ)
2016nn0red 11804 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
2120adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ∈ ℝ)
2211nn0red 11804 . . . . . . . . . . . . . 14 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
2322adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ)
24 simpr 485 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)
2521, 23, 24nltled 10637 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))
2623, 21subge0d 11078 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ↔ 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2725, 26mpbird 258 . . . . . . . . . . 11 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))
28 elnn0z 11842 . . . . . . . . . . 11 ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 ↔ ((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ ∧ 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
2919, 27, 28sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
3029faccld 13494 . . . . . . . . 9 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℕ)
3130nncnd 11502 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
3230nnne0d 11535 . . . . . . . 8 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ≠ 0)
3314, 31, 32divcld 11264 . . . . . . 7 ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
3433adantlr 711 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
35 etransclem20.s . . . . . . . . . . 11 (𝜑𝑆 ∈ {ℝ, ℂ})
36 etransclem20.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
3735, 36dvdmsscn 41762 . . . . . . . . . 10 (𝜑𝑋 ⊆ ℂ)
3837sselda 3889 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
39 etransclem20.J . . . . . . . . . . 11 (𝜑𝐽 ∈ (0...𝑀))
40 elfzelz 12758 . . . . . . . . . . . 12 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ)
4140zcnd 11937 . . . . . . . . . . 11 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ)
4239, 41syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℂ)
4342adantr 481 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
4438, 43subcld 10845 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥𝐽) ∈ ℂ)
4544adantr 481 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥𝐽) ∈ ℂ)
4629adantlr 711 . . . . . . 7 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0)
4745, 46expcld 13360 . . . . . 6 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ)
4834, 47mulcld 10507 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ)
496, 48eqeltrd 2883 . . . 4 (((𝜑𝑥𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
504, 49pm2.61dan 809 . . 3 ((𝜑𝑥𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ)
51 eqid 2795 . . 3 (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
5250, 51fmptd 6741 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ)
53 etransclem20.h . . . 4 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
5435, 36, 7, 53, 39, 16etransclem17 42078 . . 3 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
5554feq1d 6367 . 2 (𝜑 → (((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ ↔ (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ))
5652, 55mpbird 258 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2081  ifcif 4381  {cpr 4474   class class class wbr 4962  cmpt 5041  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   · cmul 10388   < clt 10521  cle 10522  cmin 10717   / cdiv 11145  cn 11486  0cn0 11745  cz 11829  ...cfz 12742  cexp 13279  !cfa 13483  t crest 16523  TopOpenctopn 16524  fldccnfld 20227   D𝑛 cdvn 24145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-fac 13484  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-dvn 24149
This theorem is referenced by:  etransclem27  42088  etransclem29  42090  etransclem31  42092  etransclem32  42093  etransclem33  42094  etransclem34  42095
  Copyright terms: Public domain W3C validator