Proof of Theorem etransclem20
| Step | Hyp | Ref
| Expression |
| 1 | | iftrue 4531 |
. . . . . 6
⊢ (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0) |
| 2 | | 0cnd 11254 |
. . . . . 6
⊢ (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → 0 ∈ ℂ) |
| 3 | 1, 2 | eqeltrd 2841 |
. . . . 5
⊢ (if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ) |
| 4 | 3 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ) |
| 5 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) |
| 6 | 5 | iffalsed 4536 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) |
| 7 | | etransclem20.p |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 8 | | nnm1nn0 12567 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
| 10 | 7 | nnnn0d 12587 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 11 | 9, 10 | ifcld 4572 |
. . . . . . . . . . 11
⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈
ℕ0) |
| 12 | 11 | faccld 14323 |
. . . . . . . . . 10
⊢ (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℕ) |
| 13 | 12 | nncnd 12282 |
. . . . . . . . 9
⊢ (𝜑 → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
| 14 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ) |
| 15 | 11 | nn0zd 12639 |
. . . . . . . . . . . . 13
⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℤ) |
| 16 | | etransclem20.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 17 | 16 | nn0zd 12639 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 18 | 15, 17 | zsubcld 12727 |
. . . . . . . . . . . 12
⊢ (𝜑 → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ) |
| 20 | 16 | nn0red 12588 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ∈ ℝ) |
| 22 | 11 | nn0red 12588 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
| 24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) |
| 25 | 21, 23, 24 | nltled 11411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
| 26 | 23, 21 | subge0d 11853 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ↔ 𝑁 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃))) |
| 27 | 25, 26 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) |
| 28 | | elnn0z 12626 |
. . . . . . . . . . 11
⊢
((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℕ0 ↔
((if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈ ℤ ∧ 0 ≤ (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) |
| 29 | 19, 27, 28 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈
ℕ0) |
| 30 | 29 | faccld 14323 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℕ) |
| 31 | 30 | nncnd 12282 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ) |
| 32 | 30 | nnne0d 12316 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ≠ 0) |
| 33 | 14, 31, 32 | divcld 12043 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ) |
| 34 | 33 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ) |
| 35 | | etransclem20.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 36 | | etransclem20.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 37 | 35, 36 | dvdmsscn 45951 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 38 | 37 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
| 39 | | etransclem20.J |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
| 40 | | elfzelz 13564 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ) |
| 41 | 40 | zcnd 12723 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ) |
| 42 | 39, 41 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 43 | 42 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐽 ∈ ℂ) |
| 44 | 38, 43 | subcld 11620 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 − 𝐽) ∈ ℂ) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (𝑥 − 𝐽) ∈ ℂ) |
| 46 | 29 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁) ∈
ℕ0) |
| 47 | 45, 46 | expcld 14186 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) ∈ ℂ) |
| 48 | 34, 47 | mulcld 11281 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) ∈ ℂ) |
| 49 | 6, 48 | eqeltrd 2841 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ ¬ if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ) |
| 50 | 4, 49 | pm2.61dan 813 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) ∈ ℂ) |
| 51 | | eqid 2737 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) |
| 52 | 50, 51 | fmptd 7134 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ) |
| 53 | | etransclem20.h |
. . . 4
⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
| 54 | 35, 36, 7, 53, 39, 16 | etransclem17 46266 |
. . 3
⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
| 55 | 54 | feq1d 6720 |
. 2
⊢ (𝜑 → (((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))):𝑋⟶ℂ)) |
| 56 | 52, 55 | mpbird 257 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁):𝑋⟶ℂ) |