| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem43 | Structured version Visualization version GIF version | ||
| Description: 𝐺 is a continuous function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem43.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| etransclem43.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| etransclem43.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| etransclem43.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| etransclem43.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) |
| etransclem43.g | ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (0...𝑅)(((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥)) |
| Ref | Expression |
|---|---|
| etransclem43 | ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem43.g | . 2 ⊢ 𝐺 = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (0...𝑅)(((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥)) | |
| 2 | etransclem43.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 3 | etransclem43.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 4 | 2, 3 | dvdmsscn 45927 | . . 3 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 5 | fzfid 13914 | . . 3 ⊢ (𝜑 → (0...𝑅) ∈ Fin) | |
| 6 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → 𝑆 ∈ {ℝ, ℂ}) |
| 7 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| 8 | etransclem43.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → 𝑃 ∈ ℕ) |
| 10 | etransclem43.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → 𝑀 ∈ ℕ0) |
| 12 | etransclem43.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥 − 𝑗)↑𝑃))) | |
| 13 | elfznn0 13557 | . . . . . . 7 ⊢ (𝑖 ∈ (0...𝑅) → 𝑖 ∈ ℕ0) | |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → 𝑖 ∈ ℕ0) |
| 15 | 6, 7, 9, 11, 12, 14 | etransclem33 46258 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → ((𝑆 D𝑛 𝐹)‘𝑖):𝑋⟶ℂ) |
| 16 | 15 | feqmptd 6911 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → ((𝑆 D𝑛 𝐹)‘𝑖) = (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥))) |
| 17 | 6, 7, 9, 11, 12, 14 | etransclem40 46265 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → ((𝑆 D𝑛 𝐹)‘𝑖) ∈ (𝑋–cn→ℂ)) |
| 18 | 16, 17 | eqeltrrd 2829 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑅)) → (𝑥 ∈ 𝑋 ↦ (((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 19 | 4, 5, 18 | fsumcncf 45869 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (0...𝑅)(((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥)) ∈ (𝑋–cn→ℂ)) |
| 20 | 1, 19 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝑋–cn→ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4587 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 · cmul 11049 − cmin 11381 ℕcn 12162 ℕ0cn0 12418 ...cfz 13444 ↑cexp 14002 Σcsu 15628 ∏cprod 15845 ↾t crest 17359 TopOpenctopn 17360 ℂfldccnfld 21296 –cn→ccncf 24802 D𝑛 cdvn 25798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-prod 15846 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-limc 25800 df-dv 25801 df-dvn 25802 |
| This theorem is referenced by: etransclem46 46271 |
| Copyright terms: Public domain | W3C validator |