Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eupth2lem3lem1 | Structured version Visualization version GIF version |
Description: Lemma for eupth2lem3 28888. (Contributed by AV, 21-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
eupth2lem3lem1 | ⊢ (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | trlsegvdeg.vx | . . . . 5 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
3 | 1, 2 | eleqtrrd 2840 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ (Vtx‘𝑋)) |
4 | 3 | elfvexd 6864 | . . 3 ⊢ (𝜑 → 𝑋 ∈ V) |
5 | trlsegvdeg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
6 | trlsegvdeg.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | trlsegvdeg.f | . . . 4 ⊢ (𝜑 → Fun 𝐼) | |
8 | trlsegvdeg.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
9 | trlsegvdeg.w | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
10 | trlsegvdeg.vy | . . . 4 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
11 | trlsegvdeg.vz | . . . 4 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
12 | trlsegvdeg.ix | . . . 4 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
13 | trlsegvdeg.iy | . . . 4 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
14 | trlsegvdeg.iz | . . . 4 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
15 | 5, 6, 7, 8, 1, 9, 2, 10, 11, 12, 13, 14 | trlsegvdeglem6 28877 | . . 3 ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) |
16 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝑋) = (Vtx‘𝑋) | |
17 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝑋) = (iEdg‘𝑋) | |
18 | eqid 2736 | . . . 4 ⊢ dom (iEdg‘𝑋) = dom (iEdg‘𝑋) | |
19 | 16, 17, 18 | vtxdgfisf 28132 | . . 3 ⊢ ((𝑋 ∈ V ∧ dom (iEdg‘𝑋) ∈ Fin) → (VtxDeg‘𝑋):(Vtx‘𝑋)⟶ℕ0) |
20 | 4, 15, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (VtxDeg‘𝑋):(Vtx‘𝑋)⟶ℕ0) |
21 | 20, 3 | ffvelcdmd 7018 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4573 〈cop 4579 class class class wbr 5092 dom cdm 5620 ↾ cres 5622 “ cima 5623 Fun wfun 6473 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 Fincfn 8804 0cc0 10972 ℕ0cn0 12334 ...cfz 13340 ..^cfzo 13483 ♯chash 14145 Vtxcvtx 27655 iEdgciedg 27656 VtxDegcvtxdg 28121 Trailsctrls 28346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-xadd 12950 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-vtxdg 28122 df-wlks 28255 df-trls 28348 |
This theorem is referenced by: eupth2lem3lem3 28882 eupth2lem3lem4 28883 eupth2lem3lem6 28885 |
Copyright terms: Public domain | W3C validator |