Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem1 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem1 28013
 Description: Lemma for eupth2lem3 28021. (Contributed by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
eupth2lem3lem1 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)

Proof of Theorem eupth2lem3lem1
StepHypRef Expression
1 trlsegvdeg.u . . . . 5 (𝜑𝑈𝑉)
2 trlsegvdeg.vx . . . . 5 (𝜑 → (Vtx‘𝑋) = 𝑉)
31, 2eleqtrrd 2893 . . . 4 (𝜑𝑈 ∈ (Vtx‘𝑋))
43elfvexd 6679 . . 3 (𝜑𝑋 ∈ V)
5 trlsegvdeg.v . . . 4 𝑉 = (Vtx‘𝐺)
6 trlsegvdeg.i . . . 4 𝐼 = (iEdg‘𝐺)
7 trlsegvdeg.f . . . 4 (𝜑 → Fun 𝐼)
8 trlsegvdeg.n . . . 4 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
9 trlsegvdeg.w . . . 4 (𝜑𝐹(Trails‘𝐺)𝑃)
10 trlsegvdeg.vy . . . 4 (𝜑 → (Vtx‘𝑌) = 𝑉)
11 trlsegvdeg.vz . . . 4 (𝜑 → (Vtx‘𝑍) = 𝑉)
12 trlsegvdeg.ix . . . 4 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
13 trlsegvdeg.iy . . . 4 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
14 trlsegvdeg.iz . . . 4 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
155, 6, 7, 8, 1, 9, 2, 10, 11, 12, 13, 14trlsegvdeglem6 28010 . . 3 (𝜑 → dom (iEdg‘𝑋) ∈ Fin)
16 eqid 2798 . . . 4 (Vtx‘𝑋) = (Vtx‘𝑋)
17 eqid 2798 . . . 4 (iEdg‘𝑋) = (iEdg‘𝑋)
18 eqid 2798 . . . 4 dom (iEdg‘𝑋) = dom (iEdg‘𝑋)
1916, 17, 18vtxdgfisf 27266 . . 3 ((𝑋 ∈ V ∧ dom (iEdg‘𝑋) ∈ Fin) → (VtxDeg‘𝑋):(Vtx‘𝑋)⟶ℕ0)
204, 15, 19syl2anc 587 . 2 (𝜑 → (VtxDeg‘𝑋):(Vtx‘𝑋)⟶ℕ0)
2120, 3ffvelrnd 6829 1 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  Vcvv 3441  {csn 4525  ⟨cop 4531   class class class wbr 5030  dom cdm 5519   ↾ cres 5521   “ cima 5522  Fun wfun 6318  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526  ℕ0cn0 11885  ...cfz 12885  ..^cfzo 13028  ♯chash 13686  Vtxcvtx 26789  iEdgciedg 26790  VtxDegcvtxdg 27255  Trailsctrls 27480 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-vtxdg 27256  df-wlks 27389  df-trls 27482 This theorem is referenced by:  eupth2lem3lem3  28015  eupth2lem3lem4  28016  eupth2lem3lem6  28018
 Copyright terms: Public domain W3C validator