Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumsubg Structured version   Visualization version   GIF version

Theorem gsumsubg 31208
Description: The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023.)
Hypotheses
Ref Expression
gsumsubg.1 𝐻 = (𝐺s 𝐵)
gsumsubg.a (𝜑𝐴𝑉)
gsumsubg.f (𝜑𝐹:𝐴𝐵)
gsumsubg.b (𝜑𝐵 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
gsumsubg (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))

Proof of Theorem gsumsubg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2738 . 2 (+g𝐺) = (+g𝐺)
3 gsumsubg.1 . 2 𝐻 = (𝐺s 𝐵)
4 gsumsubg.b . . 3 (𝜑𝐵 ∈ (SubGrp‘𝐺))
54elfvexd 6790 . 2 (𝜑𝐺 ∈ V)
6 gsumsubg.a . 2 (𝜑𝐴𝑉)
71subgss 18671 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → 𝐵 ⊆ (Base‘𝐺))
84, 7syl 17 . 2 (𝜑𝐵 ⊆ (Base‘𝐺))
9 gsumsubg.f . 2 (𝜑𝐹:𝐴𝐵)
10 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
1110subg0cl 18678 . . 3 (𝐵 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝐵)
124, 11syl 17 . 2 (𝜑 → (0g𝐺) ∈ 𝐵)
13 subgrcl 18675 . . . 4 (𝐵 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
144, 13syl 17 . . 3 (𝜑𝐺 ∈ Grp)
151, 2, 10grplid 18524 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
161, 2, 10grprid 18525 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
1715, 16jca 511 . . 3 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → (((0g𝐺)(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)(0g𝐺)) = 𝑥))
1814, 17sylan 579 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (((0g𝐺)(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)(0g𝐺)) = 𝑥))
191, 2, 3, 5, 6, 8, 9, 12, 18gsumress 18281 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Grpcgrp 18492  SubGrpcsubg 18664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-seq 13650  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-subg 18667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator