| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsdomd | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 18575 and then applying unirnfdomd 10590 to the map given in acsmap2d 18574. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| acsinfd.7 | ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
| Ref | Expression |
|---|---|
| acsdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsmap2d.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | acsmap2d.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 5 | acsmap2d.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
| 6 | acsmap2d.6 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 7 | 1, 2, 3, 4, 5, 6 | acsmap2d 18574 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| 8 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑆 = ∪ ran 𝑓) | |
| 9 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
| 10 | inss2 4220 | . . . . 5 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ Fin | |
| 11 | fss 6733 | . . . . 5 ⊢ ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ⊆ Fin) → 𝑓:𝑇⟶Fin) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑓:𝑇⟶Fin) |
| 13 | acsinfd.7 | . . . . . 6 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) | |
| 14 | 1, 2, 3, 4, 5, 6, 13 | acsinfd 18575 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ¬ 𝑇 ∈ Fin) |
| 16 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝐴 ∈ (ACS‘𝑋)) |
| 17 | 16 | elfvexd 6926 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑋 ∈ V) |
| 18 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑇 ⊆ 𝑋) |
| 19 | 17, 18 | ssexd 5306 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑇 ∈ V) |
| 20 | 12, 15, 19 | unirnfdomd 10590 | . . 3 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ∪ ran 𝑓 ≼ 𝑇) |
| 21 | 8, 20 | eqbrtrd 5147 | . 2 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑆 ≼ 𝑇) |
| 22 | 7, 21 | exlimddv 1934 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∩ cin 3932 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 class class class wbr 5125 ran crn 5668 ⟶wf 6538 ‘cfv 6542 ≼ cdom 8966 Fincfn 8968 mrClscmrc 17602 mrIndcmri 17603 ACScacs 17604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-reg 9615 ax-inf2 9664 ax-ac2 10486 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-oi 9533 df-r1 9787 df-rank 9788 df-card 9962 df-acn 9965 df-ac 10139 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-tset 17296 df-ple 17297 df-ocomp 17298 df-mre 17605 df-mrc 17606 df-mri 17607 df-acs 17608 df-proset 18315 df-drs 18316 df-poset 18334 df-ipo 18547 |
| This theorem is referenced by: acsinfdimd 18577 |
| Copyright terms: Public domain | W3C validator |