| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsdomd | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 18462 and then applying unirnfdomd 10461 to the map given in acsmap2d 18461. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| acsinfd.7 | ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
| Ref | Expression |
|---|---|
| acsdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsmap2d.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | acsmap2d.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 5 | acsmap2d.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
| 6 | acsmap2d.6 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 7 | 1, 2, 3, 4, 5, 6 | acsmap2d 18461 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| 8 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑆 = ∪ ran 𝑓) | |
| 9 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
| 10 | inss2 4189 | . . . . 5 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ Fin | |
| 11 | fss 6668 | . . . . 5 ⊢ ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ⊆ Fin) → 𝑓:𝑇⟶Fin) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑓:𝑇⟶Fin) |
| 13 | acsinfd.7 | . . . . . 6 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) | |
| 14 | 1, 2, 3, 4, 5, 6, 13 | acsinfd 18462 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ¬ 𝑇 ∈ Fin) |
| 16 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝐴 ∈ (ACS‘𝑋)) |
| 17 | 16 | elfvexd 6859 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑋 ∈ V) |
| 18 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑇 ⊆ 𝑋) |
| 19 | 17, 18 | ssexd 5263 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑇 ∈ V) |
| 20 | 12, 15, 19 | unirnfdomd 10461 | . . 3 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ∪ ran 𝑓 ≼ 𝑇) |
| 21 | 8, 20 | eqbrtrd 5114 | . 2 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑆 ≼ 𝑇) |
| 22 | 7, 21 | exlimddv 1935 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 class class class wbr 5092 ran crn 5620 ⟶wf 6478 ‘cfv 6482 ≼ cdom 8870 Fincfn 8872 mrClscmrc 17485 mrIndcmri 17486 ACScacs 17487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-r1 9660 df-rank 9661 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-tset 17180 df-ple 17181 df-ocomp 17182 df-mre 17488 df-mrc 17489 df-mri 17490 df-acs 17491 df-proset 18200 df-drs 18201 df-poset 18219 df-ipo 18434 |
| This theorem is referenced by: acsinfdimd 18464 |
| Copyright terms: Public domain | W3C validator |