Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsdomd | Structured version Visualization version GIF version |
Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 17861 and then applying unirnfdomd 10032 to the map given in acsmap2d 17860. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
acsinfd.7 | ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) |
Ref | Expression |
---|---|
acsdomd | ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | acsmap2d.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | acsmap2d.4 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
5 | acsmap2d.5 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
6 | acsmap2d.6 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
7 | 1, 2, 3, 4, 5, 6 | acsmap2d 17860 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
8 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑆 = ∪ ran 𝑓) | |
9 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
10 | inss2 4136 | . . . . 5 ⊢ (𝒫 𝑆 ∩ Fin) ⊆ Fin | |
11 | fss 6516 | . . . . 5 ⊢ ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ⊆ Fin) → 𝑓:𝑇⟶Fin) | |
12 | 9, 10, 11 | sylancl 589 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑓:𝑇⟶Fin) |
13 | acsinfd.7 | . . . . . 6 ⊢ (𝜑 → ¬ 𝑆 ∈ Fin) | |
14 | 1, 2, 3, 4, 5, 6, 13 | acsinfd 17861 | . . . . 5 ⊢ (𝜑 → ¬ 𝑇 ∈ Fin) |
15 | 14 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ¬ 𝑇 ∈ Fin) |
16 | 1 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝐴 ∈ (ACS‘𝑋)) |
17 | 16 | elfvexd 6696 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑋 ∈ V) |
18 | 5 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑇 ⊆ 𝑋) |
19 | 17, 18 | ssexd 5197 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑇 ∈ V) |
20 | 12, 15, 19 | unirnfdomd 10032 | . . 3 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → ∪ ran 𝑓 ≼ 𝑇) |
21 | 8, 20 | eqbrtrd 5057 | . 2 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) → 𝑆 ≼ 𝑇) |
22 | 7, 21 | exlimddv 1936 | 1 ⊢ (𝜑 → 𝑆 ≼ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3859 ⊆ wss 3860 𝒫 cpw 4497 ∪ cuni 4801 class class class wbr 5035 ran crn 5528 ⟶wf 6335 ‘cfv 6339 ≼ cdom 8530 Fincfn 8532 mrClscmrc 16917 mrIndcmri 16918 ACScacs 16919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-reg 9094 ax-inf2 9142 ax-ac2 9928 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-oi 9012 df-r1 9231 df-rank 9232 df-card 9406 df-acn 9409 df-ac 9581 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-tset 16647 df-ple 16648 df-ocomp 16649 df-mre 16920 df-mrc 16921 df-mri 16922 df-acs 16923 df-proset 17609 df-drs 17610 df-poset 17627 df-ipo 17833 |
This theorem is referenced by: acsinfdimd 17863 |
Copyright terms: Public domain | W3C validator |