Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdomd Structured version   Visualization version   GIF version

Theorem acsdomd 17862
 Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is infinite independent, then 𝑇 dominates 𝑆. This follows from applying acsinfd 17861 and then applying unirnfdomd 10032 to the map given in acsmap2d 17860. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmap2d.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmap2d.2 𝑁 = (mrCls‘𝐴)
acsmap2d.3 𝐼 = (mrInd‘𝐴)
acsmap2d.4 (𝜑𝑆𝐼)
acsmap2d.5 (𝜑𝑇𝑋)
acsmap2d.6 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
acsinfd.7 (𝜑 → ¬ 𝑆 ∈ Fin)
Assertion
Ref Expression
acsdomd (𝜑𝑆𝑇)

Proof of Theorem acsdomd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 acsmap2d.1 . . 3 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmap2d.2 . . 3 𝑁 = (mrCls‘𝐴)
3 acsmap2d.3 . . 3 𝐼 = (mrInd‘𝐴)
4 acsmap2d.4 . . 3 (𝜑𝑆𝐼)
5 acsmap2d.5 . . 3 (𝜑𝑇𝑋)
6 acsmap2d.6 . . 3 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
71, 2, 3, 4, 5, 6acsmap2d 17860 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓))
8 simprr 772 . . 3 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝑆 = ran 𝑓)
9 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
10 inss2 4136 . . . . 5 (𝒫 𝑆 ∩ Fin) ⊆ Fin
11 fss 6516 . . . . 5 ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ (𝒫 𝑆 ∩ Fin) ⊆ Fin) → 𝑓:𝑇⟶Fin)
129, 10, 11sylancl 589 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝑓:𝑇⟶Fin)
13 acsinfd.7 . . . . . 6 (𝜑 → ¬ 𝑆 ∈ Fin)
141, 2, 3, 4, 5, 6, 13acsinfd 17861 . . . . 5 (𝜑 → ¬ 𝑇 ∈ Fin)
1514adantr 484 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → ¬ 𝑇 ∈ Fin)
161adantr 484 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝐴 ∈ (ACS‘𝑋))
1716elfvexd 6696 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝑋 ∈ V)
185adantr 484 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝑇𝑋)
1917, 18ssexd 5197 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝑇 ∈ V)
2012, 15, 19unirnfdomd 10032 . . 3 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → ran 𝑓𝑇)
218, 20eqbrtrd 5057 . 2 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)) → 𝑆𝑇)
227, 21exlimddv 1936 1 (𝜑𝑆𝑇)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ∩ cin 3859   ⊆ wss 3860  𝒫 cpw 4497  ∪ cuni 4801   class class class wbr 5035  ran crn 5528  ⟶wf 6335  ‘cfv 6339   ≼ cdom 8530  Fincfn 8532  mrClscmrc 16917  mrIndcmri 16918  ACScacs 16919 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-reg 9094  ax-inf2 9142  ax-ac2 9928  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-oi 9012  df-r1 9231  df-rank 9232  df-card 9406  df-acn 9409  df-ac 9581  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-tset 16647  df-ple 16648  df-ocomp 16649  df-mre 16920  df-mrc 16921  df-mri 16922  df-acs 16923  df-proset 17609  df-drs 17610  df-poset 17627  df-ipo 17833 This theorem is referenced by:  acsinfdimd  17863
 Copyright terms: Public domain W3C validator