| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsssra | Structured version Visualization version GIF version | ||
| Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| lsssra.w | ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) |
| lsssra.a | ⊢ 𝐴 = (Base‘𝑅) |
| lsssra.s | ⊢ 𝑆 = (𝑅 ↾s 𝐵) |
| lsssra.b | ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| lsssra.c | ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| lsssra | ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssra.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) | |
| 2 | lsssra.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) | |
| 3 | lsssra.s | . . . . . . 7 ⊢ 𝑆 = (𝑅 ↾s 𝐵) | |
| 4 | 3 | subsubrg 20513 | . . . . . 6 ⊢ (𝐵 ∈ (SubRing‘𝑅) → (𝐶 ∈ (SubRing‘𝑆) ↔ (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | biimpa 476 | . . . . 5 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐶 ∈ (SubRing‘𝑆)) → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 6 | 1, 2, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 7 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑅)) |
| 8 | lsssra.w | . . . 4 ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) | |
| 9 | 8 | sralmod 21121 | . . 3 ⊢ (𝐶 ∈ (SubRing‘𝑅) → 𝑊 ∈ LMod) |
| 10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 11 | lsssra.a | . . . . 5 ⊢ 𝐴 = (Base‘𝑅) | |
| 12 | 11 | subrgss 20487 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑅) → 𝐵 ⊆ 𝐴) |
| 13 | 1, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 14 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑊 = ((subringAlg ‘𝑅)‘𝐶)) |
| 15 | 6 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 16 | 15, 13 | sstrd 3940 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 17 | 16, 11 | sseqtrdi 3970 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝑅)) |
| 18 | 14, 17 | srabase 21111 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑊)) |
| 19 | 11, 18 | eqtrid 2778 | . . 3 ⊢ (𝜑 → 𝐴 = (Base‘𝑊)) |
| 20 | 13, 19 | sseqtrd 3966 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑊)) |
| 21 | 1 | elfvexd 6858 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 22 | 11, 3, 13, 15, 21 | resssra 33599 | . . . 4 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵)) |
| 23 | 8 | oveq1i 7356 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) |
| 24 | 22, 23 | eqtr4di 2784 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (𝑊 ↾s 𝐵)) |
| 25 | eqid 2731 | . . . . 5 ⊢ ((subringAlg ‘𝑆)‘𝐶) = ((subringAlg ‘𝑆)‘𝐶) | |
| 26 | 25 | sralmod 21121 | . . . 4 ⊢ (𝐶 ∈ (SubRing‘𝑆) → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 27 | 2, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 28 | 24, 27 | eqeltrrd 2832 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐵) ∈ LMod) |
| 29 | eqid 2731 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 30 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 31 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 32 | 29, 30, 31 | islss3 20892 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐵 ∈ (LSubSp‘𝑊) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod))) |
| 33 | 32 | biimpar 477 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod)) → 𝐵 ∈ (LSubSp‘𝑊)) |
| 34 | 10, 20, 28, 33 | syl12anc 836 | 1 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 SubRingcsubrg 20484 LModclmod 20793 LSubSpclss 20864 subringAlg csra 21105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-mgp 20059 df-ur 20100 df-ring 20153 df-subrg 20485 df-lmod 20795 df-lss 20865 df-sra 21107 |
| This theorem is referenced by: algextdeglem2 33731 |
| Copyright terms: Public domain | W3C validator |