| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsssra | Structured version Visualization version GIF version | ||
| Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| lsssra.w | ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) |
| lsssra.a | ⊢ 𝐴 = (Base‘𝑅) |
| lsssra.s | ⊢ 𝑆 = (𝑅 ↾s 𝐵) |
| lsssra.b | ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| lsssra.c | ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| lsssra | ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssra.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) | |
| 2 | lsssra.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) | |
| 3 | lsssra.s | . . . . . . 7 ⊢ 𝑆 = (𝑅 ↾s 𝐵) | |
| 4 | 3 | subsubrg 20507 | . . . . . 6 ⊢ (𝐵 ∈ (SubRing‘𝑅) → (𝐶 ∈ (SubRing‘𝑆) ↔ (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | biimpa 476 | . . . . 5 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐶 ∈ (SubRing‘𝑆)) → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 6 | 1, 2, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 7 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑅)) |
| 8 | lsssra.w | . . . 4 ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) | |
| 9 | 8 | sralmod 21094 | . . 3 ⊢ (𝐶 ∈ (SubRing‘𝑅) → 𝑊 ∈ LMod) |
| 10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 11 | lsssra.a | . . . . 5 ⊢ 𝐴 = (Base‘𝑅) | |
| 12 | 11 | subrgss 20481 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑅) → 𝐵 ⊆ 𝐴) |
| 13 | 1, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 14 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑊 = ((subringAlg ‘𝑅)‘𝐶)) |
| 15 | 6 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 16 | 15, 13 | sstrd 3957 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 17 | 16, 11 | sseqtrdi 3987 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝑅)) |
| 18 | 14, 17 | srabase 21084 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑊)) |
| 19 | 11, 18 | eqtrid 2776 | . . 3 ⊢ (𝜑 → 𝐴 = (Base‘𝑊)) |
| 20 | 13, 19 | sseqtrd 3983 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑊)) |
| 21 | 1 | elfvexd 6897 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 22 | 11, 3, 13, 15, 21 | resssra 33583 | . . . 4 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵)) |
| 23 | 8 | oveq1i 7397 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) |
| 24 | 22, 23 | eqtr4di 2782 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (𝑊 ↾s 𝐵)) |
| 25 | eqid 2729 | . . . . 5 ⊢ ((subringAlg ‘𝑆)‘𝐶) = ((subringAlg ‘𝑆)‘𝐶) | |
| 26 | 25 | sralmod 21094 | . . . 4 ⊢ (𝐶 ∈ (SubRing‘𝑆) → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 27 | 2, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 28 | 24, 27 | eqeltrrd 2829 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐵) ∈ LMod) |
| 29 | eqid 2729 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 30 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 31 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 32 | 29, 30, 31 | islss3 20865 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐵 ∈ (LSubSp‘𝑊) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod))) |
| 33 | 32 | biimpar 477 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod)) → 𝐵 ∈ (LSubSp‘𝑊)) |
| 34 | 10, 20, 28, 33 | syl12anc 836 | 1 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 SubRingcsubrg 20478 LModclmod 20766 LSubSpclss 20837 subringAlg csra 21078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-mgp 20050 df-ur 20091 df-ring 20144 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 |
| This theorem is referenced by: algextdeglem2 33708 |
| Copyright terms: Public domain | W3C validator |