| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsssra | Structured version Visualization version GIF version | ||
| Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| lsssra.w | ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) |
| lsssra.a | ⊢ 𝐴 = (Base‘𝑅) |
| lsssra.s | ⊢ 𝑆 = (𝑅 ↾s 𝐵) |
| lsssra.b | ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| lsssra.c | ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| lsssra | ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssra.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) | |
| 2 | lsssra.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) | |
| 3 | lsssra.s | . . . . . . 7 ⊢ 𝑆 = (𝑅 ↾s 𝐵) | |
| 4 | 3 | subsubrg 20514 | . . . . . 6 ⊢ (𝐵 ∈ (SubRing‘𝑅) → (𝐶 ∈ (SubRing‘𝑆) ↔ (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | biimpa 476 | . . . . 5 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐶 ∈ (SubRing‘𝑆)) → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 6 | 1, 2, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 7 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑅)) |
| 8 | lsssra.w | . . . 4 ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) | |
| 9 | 8 | sralmod 21101 | . . 3 ⊢ (𝐶 ∈ (SubRing‘𝑅) → 𝑊 ∈ LMod) |
| 10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 11 | lsssra.a | . . . . 5 ⊢ 𝐴 = (Base‘𝑅) | |
| 12 | 11 | subrgss 20488 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑅) → 𝐵 ⊆ 𝐴) |
| 13 | 1, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 14 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑊 = ((subringAlg ‘𝑅)‘𝐶)) |
| 15 | 6 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 16 | 15, 13 | sstrd 3960 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 17 | 16, 11 | sseqtrdi 3990 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝑅)) |
| 18 | 14, 17 | srabase 21091 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑊)) |
| 19 | 11, 18 | eqtrid 2777 | . . 3 ⊢ (𝜑 → 𝐴 = (Base‘𝑊)) |
| 20 | 13, 19 | sseqtrd 3986 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑊)) |
| 21 | 1 | elfvexd 6900 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 22 | 11, 3, 13, 15, 21 | resssra 33590 | . . . 4 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵)) |
| 23 | 8 | oveq1i 7400 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) |
| 24 | 22, 23 | eqtr4di 2783 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (𝑊 ↾s 𝐵)) |
| 25 | eqid 2730 | . . . . 5 ⊢ ((subringAlg ‘𝑆)‘𝐶) = ((subringAlg ‘𝑆)‘𝐶) | |
| 26 | 25 | sralmod 21101 | . . . 4 ⊢ (𝐶 ∈ (SubRing‘𝑆) → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 27 | 2, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 28 | 24, 27 | eqeltrrd 2830 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐵) ∈ LMod) |
| 29 | eqid 2730 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 30 | eqid 2730 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 31 | eqid 2730 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 32 | 29, 30, 31 | islss3 20872 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐵 ∈ (LSubSp‘𝑊) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod))) |
| 33 | 32 | biimpar 477 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod)) → 𝐵 ∈ (LSubSp‘𝑊)) |
| 34 | 10, 20, 28, 33 | syl12anc 836 | 1 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 SubRingcsubrg 20485 LModclmod 20773 LSubSpclss 20844 subringAlg csra 21085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-mgp 20057 df-ur 20098 df-ring 20151 df-subrg 20486 df-lmod 20775 df-lss 20845 df-sra 21087 |
| This theorem is referenced by: algextdeglem2 33715 |
| Copyright terms: Public domain | W3C validator |