![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsssra | Structured version Visualization version GIF version |
Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
lsssra.w | ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) |
lsssra.a | ⊢ 𝐴 = (Base‘𝑅) |
lsssra.s | ⊢ 𝑆 = (𝑅 ↾s 𝐵) |
lsssra.b | ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
lsssra.c | ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) |
Ref | Expression |
---|---|
lsssra | ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssra.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) | |
2 | lsssra.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) | |
3 | lsssra.s | . . . . . . 7 ⊢ 𝑆 = (𝑅 ↾s 𝐵) | |
4 | 3 | subsubrg 20492 | . . . . . 6 ⊢ (𝐵 ∈ (SubRing‘𝑅) → (𝐶 ∈ (SubRing‘𝑆) ↔ (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵))) |
5 | 4 | biimpa 476 | . . . . 5 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐶 ∈ (SubRing‘𝑆)) → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
6 | 1, 2, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
7 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑅)) |
8 | lsssra.w | . . . 4 ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) | |
9 | 8 | sralmod 20958 | . . 3 ⊢ (𝐶 ∈ (SubRing‘𝑅) → 𝑊 ∈ LMod) |
10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) |
11 | lsssra.a | . . . . 5 ⊢ 𝐴 = (Base‘𝑅) | |
12 | 11 | subrgss 20466 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑅) → 𝐵 ⊆ 𝐴) |
13 | 1, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
14 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑊 = ((subringAlg ‘𝑅)‘𝐶)) |
15 | 6 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
16 | 15, 13 | sstrd 3992 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
17 | 16, 11 | sseqtrdi 4032 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝑅)) |
18 | 14, 17 | srabase 20941 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑊)) |
19 | 11, 18 | eqtrid 2783 | . . 3 ⊢ (𝜑 → 𝐴 = (Base‘𝑊)) |
20 | 13, 19 | sseqtrd 4022 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑊)) |
21 | 1 | elfvexd 6930 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
22 | 11, 3, 13, 15, 21 | resssra 32977 | . . . 4 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵)) |
23 | 8 | oveq1i 7422 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) |
24 | 22, 23 | eqtr4di 2789 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (𝑊 ↾s 𝐵)) |
25 | eqid 2731 | . . . . 5 ⊢ ((subringAlg ‘𝑆)‘𝐶) = ((subringAlg ‘𝑆)‘𝐶) | |
26 | 25 | sralmod 20958 | . . . 4 ⊢ (𝐶 ∈ (SubRing‘𝑆) → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
27 | 2, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
28 | 24, 27 | eqeltrrd 2833 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐵) ∈ LMod) |
29 | eqid 2731 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
30 | eqid 2731 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
31 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
32 | 29, 30, 31 | islss3 20718 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐵 ∈ (LSubSp‘𝑊) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod))) |
33 | 32 | biimpar 477 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod)) → 𝐵 ∈ (LSubSp‘𝑊)) |
34 | 10, 20, 28, 33 | syl12anc 834 | 1 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 ↾s cress 17180 SubRingcsubrg 20461 LModclmod 20618 LSubSpclss 20690 subringAlg csra 20930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-0g 17394 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-sbg 18863 df-subg 19043 df-mgp 20033 df-ur 20080 df-ring 20133 df-subrg 20463 df-lmod 20620 df-lss 20691 df-sra 20934 |
This theorem is referenced by: algextdeglem2 33078 |
Copyright terms: Public domain | W3C validator |