| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsssra | Structured version Visualization version GIF version | ||
| Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| lsssra.w | ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) |
| lsssra.a | ⊢ 𝐴 = (Base‘𝑅) |
| lsssra.s | ⊢ 𝑆 = (𝑅 ↾s 𝐵) |
| lsssra.b | ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| lsssra.c | ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) |
| Ref | Expression |
|---|---|
| lsssra | ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsssra.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) | |
| 2 | lsssra.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑆)) | |
| 3 | lsssra.s | . . . . . . 7 ⊢ 𝑆 = (𝑅 ↾s 𝐵) | |
| 4 | 3 | subsubrg 20558 | . . . . . 6 ⊢ (𝐵 ∈ (SubRing‘𝑅) → (𝐶 ∈ (SubRing‘𝑆) ↔ (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵))) |
| 5 | 4 | biimpa 476 | . . . . 5 ⊢ ((𝐵 ∈ (SubRing‘𝑅) ∧ 𝐶 ∈ (SubRing‘𝑆)) → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 6 | 1, 2, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (SubRing‘𝑅) ∧ 𝐶 ⊆ 𝐵)) |
| 7 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘𝑅)) |
| 8 | lsssra.w | . . . 4 ⊢ 𝑊 = ((subringAlg ‘𝑅)‘𝐶) | |
| 9 | 8 | sralmod 21145 | . . 3 ⊢ (𝐶 ∈ (SubRing‘𝑅) → 𝑊 ∈ LMod) |
| 10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 11 | lsssra.a | . . . . 5 ⊢ 𝐴 = (Base‘𝑅) | |
| 12 | 11 | subrgss 20532 | . . . 4 ⊢ (𝐵 ∈ (SubRing‘𝑅) → 𝐵 ⊆ 𝐴) |
| 13 | 1, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 14 | 8 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑊 = ((subringAlg ‘𝑅)‘𝐶)) |
| 15 | 6 | simprd 495 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 16 | 15, 13 | sstrd 3969 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 17 | 16, 11 | sseqtrdi 3999 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝑅)) |
| 18 | 14, 17 | srabase 21135 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑊)) |
| 19 | 11, 18 | eqtrid 2782 | . . 3 ⊢ (𝜑 → 𝐴 = (Base‘𝑊)) |
| 20 | 13, 19 | sseqtrd 3995 | . 2 ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑊)) |
| 21 | 1 | elfvexd 6915 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) |
| 22 | 11, 3, 13, 15, 21 | resssra 33627 | . . . 4 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵)) |
| 23 | 8 | oveq1i 7415 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (((subringAlg ‘𝑅)‘𝐶) ↾s 𝐵) |
| 24 | 22, 23 | eqtr4di 2788 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) = (𝑊 ↾s 𝐵)) |
| 25 | eqid 2735 | . . . . 5 ⊢ ((subringAlg ‘𝑆)‘𝐶) = ((subringAlg ‘𝑆)‘𝐶) | |
| 26 | 25 | sralmod 21145 | . . . 4 ⊢ (𝐶 ∈ (SubRing‘𝑆) → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 27 | 2, 26 | syl 17 | . . 3 ⊢ (𝜑 → ((subringAlg ‘𝑆)‘𝐶) ∈ LMod) |
| 28 | 24, 27 | eqeltrrd 2835 | . 2 ⊢ (𝜑 → (𝑊 ↾s 𝐵) ∈ LMod) |
| 29 | eqid 2735 | . . . 4 ⊢ (𝑊 ↾s 𝐵) = (𝑊 ↾s 𝐵) | |
| 30 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 31 | eqid 2735 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 32 | 29, 30, 31 | islss3 20916 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐵 ∈ (LSubSp‘𝑊) ↔ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod))) |
| 33 | 32 | biimpar 477 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝐵 ⊆ (Base‘𝑊) ∧ (𝑊 ↾s 𝐵) ∈ LMod)) → 𝐵 ∈ (LSubSp‘𝑊)) |
| 34 | 10, 20, 28, 33 | syl12anc 836 | 1 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 SubRingcsubrg 20529 LModclmod 20817 LSubSpclss 20888 subringAlg csra 21129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-mgp 20101 df-ur 20142 df-ring 20195 df-subrg 20530 df-lmod 20819 df-lss 20889 df-sra 21131 |
| This theorem is referenced by: algextdeglem2 33752 |
| Copyright terms: Public domain | W3C validator |