![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsssra | Structured version Visualization version GIF version |
Description: A subring is a subspace of the subring algebra. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
lsssra.w | β’ π = ((subringAlg βπ )βπΆ) |
lsssra.a | β’ π΄ = (Baseβπ ) |
lsssra.s | β’ π = (π βΎs π΅) |
lsssra.b | β’ (π β π΅ β (SubRingβπ )) |
lsssra.c | β’ (π β πΆ β (SubRingβπ)) |
Ref | Expression |
---|---|
lsssra | β’ (π β π΅ β (LSubSpβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssra.b | . . . . 5 β’ (π β π΅ β (SubRingβπ )) | |
2 | lsssra.c | . . . . 5 β’ (π β πΆ β (SubRingβπ)) | |
3 | lsssra.s | . . . . . . 7 β’ π = (π βΎs π΅) | |
4 | 3 | subsubrg 20488 | . . . . . 6 β’ (π΅ β (SubRingβπ ) β (πΆ β (SubRingβπ) β (πΆ β (SubRingβπ ) β§ πΆ β π΅))) |
5 | 4 | biimpa 475 | . . . . 5 β’ ((π΅ β (SubRingβπ ) β§ πΆ β (SubRingβπ)) β (πΆ β (SubRingβπ ) β§ πΆ β π΅)) |
6 | 1, 2, 5 | syl2anc 582 | . . . 4 β’ (π β (πΆ β (SubRingβπ ) β§ πΆ β π΅)) |
7 | 6 | simpld 493 | . . 3 β’ (π β πΆ β (SubRingβπ )) |
8 | lsssra.w | . . . 4 β’ π = ((subringAlg βπ )βπΆ) | |
9 | 8 | sralmod 20954 | . . 3 β’ (πΆ β (SubRingβπ ) β π β LMod) |
10 | 7, 9 | syl 17 | . 2 β’ (π β π β LMod) |
11 | lsssra.a | . . . . 5 β’ π΄ = (Baseβπ ) | |
12 | 11 | subrgss 20462 | . . . 4 β’ (π΅ β (SubRingβπ ) β π΅ β π΄) |
13 | 1, 12 | syl 17 | . . 3 β’ (π β π΅ β π΄) |
14 | 8 | a1i 11 | . . . . 5 β’ (π β π = ((subringAlg βπ )βπΆ)) |
15 | 6 | simprd 494 | . . . . . . 7 β’ (π β πΆ β π΅) |
16 | 15, 13 | sstrd 3991 | . . . . . 6 β’ (π β πΆ β π΄) |
17 | 16, 11 | sseqtrdi 4031 | . . . . 5 β’ (π β πΆ β (Baseβπ )) |
18 | 14, 17 | srabase 20937 | . . . 4 β’ (π β (Baseβπ ) = (Baseβπ)) |
19 | 11, 18 | eqtrid 2782 | . . 3 β’ (π β π΄ = (Baseβπ)) |
20 | 13, 19 | sseqtrd 4021 | . 2 β’ (π β π΅ β (Baseβπ)) |
21 | 1 | elfvexd 6929 | . . . . 5 β’ (π β π β V) |
22 | 11, 3, 13, 15, 21 | resssra 32962 | . . . 4 β’ (π β ((subringAlg βπ)βπΆ) = (((subringAlg βπ )βπΆ) βΎs π΅)) |
23 | 8 | oveq1i 7421 | . . . 4 β’ (π βΎs π΅) = (((subringAlg βπ )βπΆ) βΎs π΅) |
24 | 22, 23 | eqtr4di 2788 | . . 3 β’ (π β ((subringAlg βπ)βπΆ) = (π βΎs π΅)) |
25 | eqid 2730 | . . . . 5 β’ ((subringAlg βπ)βπΆ) = ((subringAlg βπ)βπΆ) | |
26 | 25 | sralmod 20954 | . . . 4 β’ (πΆ β (SubRingβπ) β ((subringAlg βπ)βπΆ) β LMod) |
27 | 2, 26 | syl 17 | . . 3 β’ (π β ((subringAlg βπ)βπΆ) β LMod) |
28 | 24, 27 | eqeltrrd 2832 | . 2 β’ (π β (π βΎs π΅) β LMod) |
29 | eqid 2730 | . . . 4 β’ (π βΎs π΅) = (π βΎs π΅) | |
30 | eqid 2730 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
31 | eqid 2730 | . . . 4 β’ (LSubSpβπ) = (LSubSpβπ) | |
32 | 29, 30, 31 | islss3 20714 | . . 3 β’ (π β LMod β (π΅ β (LSubSpβπ) β (π΅ β (Baseβπ) β§ (π βΎs π΅) β LMod))) |
33 | 32 | biimpar 476 | . 2 β’ ((π β LMod β§ (π΅ β (Baseβπ) β§ (π βΎs π΅) β LMod)) β π΅ β (LSubSpβπ)) |
34 | 10, 20, 28, 33 | syl12anc 833 | 1 β’ (π β π΅ β (LSubSpβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 Vcvv 3472 β wss 3947 βcfv 6542 (class class class)co 7411 Basecbs 17148 βΎs cress 17177 SubRingcsubrg 20457 LModclmod 20614 LSubSpclss 20686 subringAlg csra 20926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-mgp 20029 df-ur 20076 df-ring 20129 df-subrg 20459 df-lmod 20616 df-lss 20687 df-sra 20930 |
This theorem is referenced by: algextdeglem2 33063 |
Copyright terms: Public domain | W3C validator |