| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > telgsumfz | Structured version Visualization version GIF version | ||
| Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15711. (Contributed by AV, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| telgsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
| telgsumfz.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| telgsumfz.m | ⊢ − = (-g‘𝐺) |
| telgsumfz.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| telgsumfz.f | ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) |
| telgsumfz.l | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) |
| telgsumfz.c | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) |
| telgsumfz.d | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
| telgsumfz.e | ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) |
| Ref | Expression |
|---|---|
| telgsumfz | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝑖 ∈ (𝑀...𝑁)) | |
| 2 | telgsumfz.l | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) | |
| 3 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐿) |
| 4 | 1, 3 | csbied 3881 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐿) |
| 5 | 4 | eqcomd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝐿 = ⦋𝑖 / 𝑘⦌𝐴) |
| 6 | ovexd 7381 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝑖 + 1) ∈ V) | |
| 7 | telgsumfz.c | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶) |
| 9 | 6, 8 | csbied 3881 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐶) |
| 10 | 9 | eqcomd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝐶 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
| 11 | 5, 10 | oveq12d 7364 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝐿 − 𝐶) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
| 12 | 11 | mpteq2dva 5182 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
| 13 | 12 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
| 14 | telgsumfz.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 15 | telgsumfz.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 16 | telgsumfz.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 17 | telgsumfz.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 18 | telgsumfz.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) | |
| 19 | 14, 15, 16, 17, 18 | telgsumfzs 19901 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = (⦋𝑀 / 𝑘⦌𝐴 − ⦋(𝑁 + 1) / 𝑘⦌𝐴)) |
| 20 | 17 | elfvexd 6858 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ V) |
| 21 | telgsumfz.d | . . . . 5 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐷) |
| 23 | 20, 22 | csbied 3881 | . . 3 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐷) |
| 24 | ovexd 7381 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ V) | |
| 25 | telgsumfz.e | . . . . 5 ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) | |
| 26 | 25 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = (𝑁 + 1)) → 𝐴 = 𝐸) |
| 27 | 24, 26 | csbied 3881 | . . 3 ⊢ (𝜑 → ⦋(𝑁 + 1) / 𝑘⦌𝐴 = 𝐸) |
| 28 | 23, 27 | oveq12d 7364 | . 2 ⊢ (𝜑 → (⦋𝑀 / 𝑘⦌𝐴 − ⦋(𝑁 + 1) / 𝑘⦌𝐴) = (𝐷 − 𝐸)) |
| 29 | 13, 19, 28 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⦋csb 3845 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 ℤ≥cuz 12732 ...cfz 13407 Basecbs 17120 Σg cgsu 17344 -gcsg 18848 Abelcabl 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-abl 19695 |
| This theorem is referenced by: cayhamlem1 22781 |
| Copyright terms: Public domain | W3C validator |