MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfz Structured version   Visualization version   GIF version

Theorem telgsumfz 19849
Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15745. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfz.b 𝐵 = (Base‘𝐺)
telgsumfz.g (𝜑𝐺 ∈ Abel)
telgsumfz.m = (-g𝐺)
telgsumfz.n (𝜑𝑁 ∈ (ℤ𝑀))
telgsumfz.f (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴𝐵)
telgsumfz.l (𝑘 = 𝑖𝐴 = 𝐿)
telgsumfz.c (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
telgsumfz.d (𝑘 = 𝑀𝐴 = 𝐷)
telgsumfz.e (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsumfz (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶))) = (𝐷 𝐸))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑘,𝐿   𝑖,𝑀,𝑘   𝑖,𝑁,𝑘   ,𝑖   𝜑,𝑖,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   𝐿(𝑖)   (𝑘)

Proof of Theorem telgsumfz
StepHypRef Expression
1 simpr 486 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝑖 ∈ (𝑀...𝑁))
2 telgsumfz.l . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐿)
32adantl 483 . . . . . . 7 (((𝜑𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐿)
41, 3csbied 3929 . . . . . 6 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝑖 / 𝑘𝐴 = 𝐿)
54eqcomd 2739 . . . . 5 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝐿 = 𝑖 / 𝑘𝐴)
6 ovexd 7438 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑖 + 1) ∈ V)
7 telgsumfz.c . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
87adantl 483 . . . . . . 7 (((𝜑𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶)
96, 8csbied 3929 . . . . . 6 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑖 + 1) / 𝑘𝐴 = 𝐶)
109eqcomd 2739 . . . . 5 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝐶 = (𝑖 + 1) / 𝑘𝐴)
115, 10oveq12d 7421 . . . 4 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝐿 𝐶) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1211mpteq2dva 5246 . . 3 (𝜑 → (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1312oveq2d 7419 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
14 telgsumfz.b . . 3 𝐵 = (Base‘𝐺)
15 telgsumfz.g . . 3 (𝜑𝐺 ∈ Abel)
16 telgsumfz.m . . 3 = (-g𝐺)
17 telgsumfz.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
18 telgsumfz.f . . 3 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴𝐵)
1914, 15, 16, 17, 18telgsumfzs 19848 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = (𝑀 / 𝑘𝐴 (𝑁 + 1) / 𝑘𝐴))
2017elfvexd 6926 . . . 4 (𝜑𝑀 ∈ V)
21 telgsumfz.d . . . . 5 (𝑘 = 𝑀𝐴 = 𝐷)
2221adantl 483 . . . 4 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐷)
2320, 22csbied 3929 . . 3 (𝜑𝑀 / 𝑘𝐴 = 𝐷)
24 ovexd 7438 . . . 4 (𝜑 → (𝑁 + 1) ∈ V)
25 telgsumfz.e . . . . 5 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
2625adantl 483 . . . 4 ((𝜑𝑘 = (𝑁 + 1)) → 𝐴 = 𝐸)
2724, 26csbied 3929 . . 3 (𝜑(𝑁 + 1) / 𝑘𝐴 = 𝐸)
2823, 27oveq12d 7421 . 2 (𝜑 → (𝑀 / 𝑘𝐴 (𝑁 + 1) / 𝑘𝐴) = (𝐷 𝐸))
2913, 19, 283eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶))) = (𝐷 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  csb 3891  cmpt 5229  cfv 6539  (class class class)co 7403  1c1 11106   + caddc 11108  cuz 12817  ...cfz 13479  Basecbs 17139   Σg cgsu 17381  -gcsg 18816  Abelcabl 19641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8141  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-n0 12468  df-z 12554  df-uz 12818  df-fz 13480  df-fzo 13623  df-seq 13962  df-hash 14286  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-0g 17382  df-gsum 17383  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-submnd 18667  df-grp 18817  df-minusg 18818  df-sbg 18819  df-mulg 18944  df-cntz 19174  df-cmn 19642  df-abl 19643
This theorem is referenced by:  cayhamlem1  22349
  Copyright terms: Public domain W3C validator