Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > telgsumfz | Structured version Visualization version GIF version |
Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15444. (Contributed by AV, 23-Nov-2019.) |
Ref | Expression |
---|---|
telgsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
telgsumfz.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
telgsumfz.m | ⊢ − = (-g‘𝐺) |
telgsumfz.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
telgsumfz.f | ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) |
telgsumfz.l | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) |
telgsumfz.c | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) |
telgsumfz.d | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
telgsumfz.e | ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) |
Ref | Expression |
---|---|
telgsumfz | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝑖 ∈ (𝑀...𝑁)) | |
2 | telgsumfz.l | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) | |
3 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐿) |
4 | 1, 3 | csbied 3866 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐿) |
5 | 4 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝐿 = ⦋𝑖 / 𝑘⦌𝐴) |
6 | ovexd 7290 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝑖 + 1) ∈ V) | |
7 | telgsumfz.c | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) | |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶) |
9 | 6, 8 | csbied 3866 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐶) |
10 | 9 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝐶 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
11 | 5, 10 | oveq12d 7273 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝐿 − 𝐶) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
12 | 11 | mpteq2dva 5170 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
13 | 12 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
14 | telgsumfz.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
15 | telgsumfz.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
16 | telgsumfz.m | . . 3 ⊢ − = (-g‘𝐺) | |
17 | telgsumfz.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
18 | telgsumfz.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) | |
19 | 14, 15, 16, 17, 18 | telgsumfzs 19505 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = (⦋𝑀 / 𝑘⦌𝐴 − ⦋(𝑁 + 1) / 𝑘⦌𝐴)) |
20 | 17 | elfvexd 6790 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ V) |
21 | telgsumfz.d | . . . . 5 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐷) |
23 | 20, 22 | csbied 3866 | . . 3 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐷) |
24 | ovexd 7290 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ V) | |
25 | telgsumfz.e | . . . . 5 ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) | |
26 | 25 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = (𝑁 + 1)) → 𝐴 = 𝐸) |
27 | 24, 26 | csbied 3866 | . . 3 ⊢ (𝜑 → ⦋(𝑁 + 1) / 𝑘⦌𝐴 = 𝐸) |
28 | 23, 27 | oveq12d 7273 | . 2 ⊢ (𝜑 → (⦋𝑀 / 𝑘⦌𝐴 − ⦋(𝑁 + 1) / 𝑘⦌𝐴) = (𝐷 − 𝐸)) |
29 | 13, 19, 28 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⦋csb 3828 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 ℤ≥cuz 12511 ...cfz 13168 Basecbs 16840 Σg cgsu 17068 -gcsg 18494 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: cayhamlem1 21923 |
Copyright terms: Public domain | W3C validator |