| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > telgsumfz | Structured version Visualization version GIF version | ||
| Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15823. (Contributed by AV, 23-Nov-2019.) |
| Ref | Expression |
|---|---|
| telgsumfz.b | ⊢ 𝐵 = (Base‘𝐺) |
| telgsumfz.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| telgsumfz.m | ⊢ − = (-g‘𝐺) |
| telgsumfz.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| telgsumfz.f | ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) |
| telgsumfz.l | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) |
| telgsumfz.c | ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) |
| telgsumfz.d | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) |
| telgsumfz.e | ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) |
| Ref | Expression |
|---|---|
| telgsumfz | ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝑖 ∈ (𝑀...𝑁)) | |
| 2 | telgsumfz.l | . . . . . . . 8 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐿) | |
| 3 | 2 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐿) |
| 4 | 1, 3 | csbied 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → ⦋𝑖 / 𝑘⦌𝐴 = 𝐿) |
| 5 | 4 | eqcomd 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝐿 = ⦋𝑖 / 𝑘⦌𝐴) |
| 6 | ovexd 7449 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝑖 + 1) ∈ V) | |
| 7 | telgsumfz.c | . . . . . . . 8 ⊢ (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶) | |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶) |
| 9 | 6, 8 | csbied 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → ⦋(𝑖 + 1) / 𝑘⦌𝐴 = 𝐶) |
| 10 | 9 | eqcomd 2740 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → 𝐶 = ⦋(𝑖 + 1) / 𝑘⦌𝐴) |
| 11 | 5, 10 | oveq12d 7432 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ (𝑀...𝑁)) → (𝐿 − 𝐶) = (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)) |
| 12 | 11 | mpteq2dva 5224 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) |
| 13 | 12 | oveq2d 7430 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴)))) |
| 14 | telgsumfz.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 15 | telgsumfz.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 16 | telgsumfz.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 17 | telgsumfz.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 18 | telgsumfz.f | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 ∈ 𝐵) | |
| 19 | 14, 15, 16, 17, 18 | telgsumfzs 19980 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (⦋𝑖 / 𝑘⦌𝐴 − ⦋(𝑖 + 1) / 𝑘⦌𝐴))) = (⦋𝑀 / 𝑘⦌𝐴 − ⦋(𝑁 + 1) / 𝑘⦌𝐴)) |
| 20 | 17 | elfvexd 6926 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ V) |
| 21 | telgsumfz.d | . . . . 5 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐷) | |
| 22 | 21 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝐴 = 𝐷) |
| 23 | 20, 22 | csbied 3917 | . . 3 ⊢ (𝜑 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐷) |
| 24 | ovexd 7449 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ V) | |
| 25 | telgsumfz.e | . . . . 5 ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸) | |
| 26 | 25 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = (𝑁 + 1)) → 𝐴 = 𝐸) |
| 27 | 24, 26 | csbied 3917 | . . 3 ⊢ (𝜑 → ⦋(𝑁 + 1) / 𝑘⦌𝐴 = 𝐸) |
| 28 | 23, 27 | oveq12d 7432 | . 2 ⊢ (𝜑 → (⦋𝑀 / 𝑘⦌𝐴 − ⦋(𝑁 + 1) / 𝑘⦌𝐴) = (𝐷 − 𝐸)) |
| 29 | 13, 19, 28 | 3eqtrd 2773 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 − 𝐶))) = (𝐷 − 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3464 ⦋csb 3881 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 1c1 11139 + caddc 11141 ℤ≥cuz 12861 ...cfz 13530 Basecbs 17230 Σg cgsu 17461 -gcsg 18927 Abelcabl 19772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-0g 17462 df-gsum 17463 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-abl 19774 |
| This theorem is referenced by: cayhamlem1 22839 |
| Copyright terms: Public domain | W3C validator |