MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  telgsumfz Structured version   Visualization version   GIF version

Theorem telgsumfz 19112
Description: Telescoping group sum ranging over a finite set of sequential integers, using implicit substitution, analogous to telfsum 15161. (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telgsumfz.b 𝐵 = (Base‘𝐺)
telgsumfz.g (𝜑𝐺 ∈ Abel)
telgsumfz.m = (-g𝐺)
telgsumfz.n (𝜑𝑁 ∈ (ℤ𝑀))
telgsumfz.f (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴𝐵)
telgsumfz.l (𝑘 = 𝑖𝐴 = 𝐿)
telgsumfz.c (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
telgsumfz.d (𝑘 = 𝑀𝐴 = 𝐷)
telgsumfz.e (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
Assertion
Ref Expression
telgsumfz (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶))) = (𝐷 𝐸))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖,𝑘   𝐶,𝑘   𝐷,𝑘   𝑘,𝐸   𝑖,𝐺   𝑘,𝐿   𝑖,𝑀,𝑘   𝑖,𝑁,𝑘   ,𝑖   𝜑,𝑖,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐶(𝑖)   𝐷(𝑖)   𝐸(𝑖)   𝐺(𝑘)   𝐿(𝑖)   (𝑘)

Proof of Theorem telgsumfz
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝑖 ∈ (𝑀...𝑁))
2 telgsumfz.l . . . . . . . 8 (𝑘 = 𝑖𝐴 = 𝐿)
32adantl 484 . . . . . . 7 (((𝜑𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = 𝑖) → 𝐴 = 𝐿)
41, 3csbied 3921 . . . . . 6 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝑖 / 𝑘𝐴 = 𝐿)
54eqcomd 2829 . . . . 5 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝐿 = 𝑖 / 𝑘𝐴)
6 ovexd 7193 . . . . . . 7 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑖 + 1) ∈ V)
7 telgsumfz.c . . . . . . . 8 (𝑘 = (𝑖 + 1) → 𝐴 = 𝐶)
87adantl 484 . . . . . . 7 (((𝜑𝑖 ∈ (𝑀...𝑁)) ∧ 𝑘 = (𝑖 + 1)) → 𝐴 = 𝐶)
96, 8csbied 3921 . . . . . 6 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝑖 + 1) / 𝑘𝐴 = 𝐶)
109eqcomd 2829 . . . . 5 ((𝜑𝑖 ∈ (𝑀...𝑁)) → 𝐶 = (𝑖 + 1) / 𝑘𝐴)
115, 10oveq12d 7176 . . . 4 ((𝜑𝑖 ∈ (𝑀...𝑁)) → (𝐿 𝐶) = (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))
1211mpteq2dva 5163 . . 3 (𝜑 → (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶)) = (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴)))
1312oveq2d 7174 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶))) = (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))))
14 telgsumfz.b . . 3 𝐵 = (Base‘𝐺)
15 telgsumfz.g . . 3 (𝜑𝐺 ∈ Abel)
16 telgsumfz.m . . 3 = (-g𝐺)
17 telgsumfz.n . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
18 telgsumfz.f . . 3 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 + 1))𝐴𝐵)
1914, 15, 16, 17, 18telgsumfzs 19111 . 2 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝑖 / 𝑘𝐴 (𝑖 + 1) / 𝑘𝐴))) = (𝑀 / 𝑘𝐴 (𝑁 + 1) / 𝑘𝐴))
2017elfvexd 6706 . . . 4 (𝜑𝑀 ∈ V)
21 telgsumfz.d . . . . 5 (𝑘 = 𝑀𝐴 = 𝐷)
2221adantl 484 . . . 4 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐷)
2320, 22csbied 3921 . . 3 (𝜑𝑀 / 𝑘𝐴 = 𝐷)
24 ovexd 7193 . . . 4 (𝜑 → (𝑁 + 1) ∈ V)
25 telgsumfz.e . . . . 5 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐸)
2625adantl 484 . . . 4 ((𝜑𝑘 = (𝑁 + 1)) → 𝐴 = 𝐸)
2724, 26csbied 3921 . . 3 (𝜑(𝑁 + 1) / 𝑘𝐴 = 𝐸)
2823, 27oveq12d 7176 . 2 (𝜑 → (𝑀 / 𝑘𝐴 (𝑁 + 1) / 𝑘𝐴) = (𝐷 𝐸))
2913, 19, 283eqtrd 2862 1 (𝜑 → (𝐺 Σg (𝑖 ∈ (𝑀...𝑁) ↦ (𝐿 𝐶))) = (𝐷 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  csb 3885  cmpt 5148  cfv 6357  (class class class)co 7158  1c1 10540   + caddc 10542  cuz 12246  ...cfz 12895  Basecbs 16485   Σg cgsu 16716  -gcsg 18107  Abelcabl 18909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-abl 18911
This theorem is referenced by:  cayhamlem1  21476
  Copyright terms: Public domain W3C validator