MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecqusaddcl Structured version   Visualization version   GIF version

Theorem ecqusaddcl 19150
Description: Closure of the addition in a quotient group. (Contributed by AV, 24-Feb-2025.)
Hypotheses
Ref Expression
ecqusaddd.i (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
ecqusaddd.b 𝐵 = (Base‘𝑅)
ecqusaddd.g = (𝑅 ~QG 𝐼)
ecqusaddd.q 𝑄 = (𝑅 /s )
Assertion
Ref Expression
ecqusaddcl ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) ∈ (Base‘𝑄))

Proof of Theorem ecqusaddcl
StepHypRef Expression
1 ecqusaddd.i . . 3 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
2 ecqusaddd.b . . 3 𝐵 = (Base‘𝑅)
3 ecqusaddd.g . . 3 = (𝑅 ~QG 𝐼)
4 ecqusaddd.q . . 3 𝑄 = (𝑅 /s )
51, 2, 3, 4ecqusaddd 19149 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] = ([𝐴] (+g𝑄)[𝐶] ))
61elfvexd 6930 . . 3 (𝜑𝑅 ∈ V)
7 nsgsubg 19115 . . . . . . 7 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
8 subgrcl 19088 . . . . . . 7 (𝐼 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp)
91, 7, 83syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
109anim1i 613 . . . . 5 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝑅 ∈ Grp ∧ (𝐴𝐵𝐶𝐵)))
11 3anass 1092 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵) ↔ (𝑅 ∈ Grp ∧ (𝐴𝐵𝐶𝐵)))
1210, 11sylibr 233 . . . 4 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵))
13 eqid 2725 . . . . 5 (+g𝑅) = (+g𝑅)
142, 13grpcl 18900 . . . 4 ((𝑅 ∈ Grp ∧ 𝐴𝐵𝐶𝐵) → (𝐴(+g𝑅)𝐶) ∈ 𝐵)
1512, 14syl 17 . . 3 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → (𝐴(+g𝑅)𝐶) ∈ 𝐵)
16 eqid 2725 . . . 4 (Base‘𝑄) = (Base‘𝑄)
173, 4, 2, 16quseccl0 19142 . . 3 ((𝑅 ∈ V ∧ (𝐴(+g𝑅)𝐶) ∈ 𝐵) → [(𝐴(+g𝑅)𝐶)] ∈ (Base‘𝑄))
186, 15, 17syl2an2r 683 . 2 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → [(𝐴(+g𝑅)𝐶)] ∈ (Base‘𝑄))
195, 18eqeltrrd 2826 1 ((𝜑 ∧ (𝐴𝐵𝐶𝐵)) → ([𝐴] (+g𝑄)[𝐶] ) ∈ (Base‘𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3463  cfv 6542  (class class class)co 7415  [cec 8719  Basecbs 17177  +gcplusg 17230   /s cqus 17484  Grpcgrp 18892  SubGrpcsubg 19077  NrmSGrpcnsg 19078   ~QG cqg 19079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-ec 8723  df-qs 8727  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-0g 17420  df-imas 17487  df-qus 17488  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-grp 18895  df-minusg 18896  df-subg 19080  df-nsg 19081  df-eqg 19082
This theorem is referenced by:  rngqiprngghm  21191
  Copyright terms: Public domain W3C validator