MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzubelfz Structured version   Visualization version   GIF version

Theorem elfzubelfz 13154
Description: If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.)
Assertion
Ref Expression
elfzubelfz (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁))

Proof of Theorem elfzubelfz
StepHypRef Expression
1 elfzuz2 13147 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13150 . 2 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  cfv 6401  (class class class)co 7235  cuz 12468  ...cfz 13125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-cnex 10815  ax-resscn 10816  ax-pre-lttri 10833  ax-pre-lttrn 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5472  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-ov 7238  df-oprab 7239  df-mpo 7240  df-1st 7783  df-2nd 7784  df-er 8415  df-en 8651  df-dom 8652  df-sdom 8653  df-pnf 10899  df-mnf 10900  df-xr 10901  df-ltxr 10902  df-le 10903  df-neg 11095  df-z 12207  df-uz 12469  df-fz 13126
This theorem is referenced by:  elfzom1elp1fzo  13339  swrdccat3b  14338  iccpartiltu  44593
  Copyright terms: Public domain W3C validator