MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuz2 Structured version   Visualization version   GIF version

Theorem elfzuz2 13429
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 13418 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
2 eqid 2731 . . 3 (ℤ𝑀) = (ℤ𝑀)
32uztrn2 12751 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 217 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  cfv 6481  (class class class)co 7346  cuz 12732  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-neg 11347  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  elfzle3  13430  elfzubelfz  13436  fzn0  13438  fzopth  13461  fzne1  13504  elfzmlbm  13538  elfzom1elp1fzo  13632  elfzr  13681  elfzlmr  13682  bcm1k  14222  bcpasc  14228  seqcoll  14371  pfxccatin12lem2c  14637  splid  14660  spllen  14661  prmodvdslcmf  16959  gexcl3  19499  dvn2bss  25859  pserdvlem2  26365  ppinprm  27089  chtnprm  27091  chpval2  27156  chpchtsum  27157  lgsdir2lem2  27264  wrdsplex  32917  fzto1stfv1  33070  fzto1stinvn  33073  monoords  45397
  Copyright terms: Public domain W3C validator