|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elfzuz2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| elfzuz2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfzuzb 13559 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | eqid 2736 | . . 3 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 3 | 2 | uztrn2 12898 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ℤ≥cuz 12879 ...cfz 13548 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-neg 11496 df-z 12616 df-uz 12880 df-fz 13549 | 
| This theorem is referenced by: elfzle3 13571 elfzubelfz 13577 fzn0 13579 fzopth 13602 fzne1 13645 elfzmlbm 13679 elfzom1elp1fzo 13772 elfzr 13820 elfzlmr 13821 bcm1k 14355 bcpasc 14361 seqcoll 14504 pfxccatin12lem2c 14769 splid 14792 spllen 14793 prmodvdslcmf 17086 gexcl3 19606 dvn2bss 25967 pserdvlem2 26473 ppinprm 27196 chtnprm 27198 chpval2 27263 chpchtsum 27264 lgsdir2lem2 27371 wrdsplex 32921 fzto1stfv1 33122 fzto1stinvn 33125 monoords 45314 | 
| Copyright terms: Public domain | W3C validator |