| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzuz2 | Structured version Visualization version GIF version | ||
| Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuz2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb 13418 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾))) | |
| 2 | eqid 2731 | . . 3 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 3 | 2 | uztrn2 12751 | . 2 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝐾)) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℤ≥cuz 12732 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: elfzle3 13430 elfzubelfz 13436 fzn0 13438 fzopth 13461 fzne1 13504 elfzmlbm 13538 elfzom1elp1fzo 13632 elfzr 13681 elfzlmr 13682 bcm1k 14222 bcpasc 14228 seqcoll 14371 pfxccatin12lem2c 14637 splid 14660 spllen 14661 prmodvdslcmf 16959 gexcl3 19499 dvn2bss 25859 pserdvlem2 26365 ppinprm 27089 chtnprm 27091 chpval2 27156 chpchtsum 27157 lgsdir2lem2 27264 wrdsplex 32917 fzto1stfv1 33070 fzto1stinvn 33073 monoords 45397 |
| Copyright terms: Public domain | W3C validator |