MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzuz2 Structured version   Visualization version   GIF version

Theorem elfzuz2 13432
Description: Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))

Proof of Theorem elfzuz2
StepHypRef Expression
1 elfzuzb 13421 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
2 eqid 2729 . . 3 (ℤ𝑀) = (ℤ𝑀)
32uztrn2 12754 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝑀))
41, 3sylbi 217 1 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cfv 6482  (class class class)co 7349  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  elfzle3  13433  elfzubelfz  13439  fzn0  13441  fzopth  13464  fzne1  13507  elfzmlbm  13541  elfzom1elp1fzo  13635  elfzr  13683  elfzlmr  13684  bcm1k  14222  bcpasc  14228  seqcoll  14371  pfxccatin12lem2c  14636  splid  14659  spllen  14660  prmodvdslcmf  16959  gexcl3  19466  dvn2bss  25830  pserdvlem2  26336  ppinprm  27060  chtnprm  27062  chpval2  27127  chpchtsum  27128  lgsdir2lem2  27235  wrdsplex  32886  fzto1stfv1  33052  fzto1stinvn  33055  monoords  45299
  Copyright terms: Public domain W3C validator