| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1eq | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
| Ref | Expression |
|---|---|
| elfz1eq | ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 13467 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ≤ 𝑁) | |
| 2 | elfzle1 13466 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ≤ 𝐾) | |
| 3 | elfzelz 13463 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ) | |
| 4 | elfzel2 13461 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ) | |
| 5 | zre 12511 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 6 | zre 12511 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 7 | letri3 11237 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) | |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
| 9 | 3, 4, 8 | syl2anc 584 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
| 10 | 1, 2, 9 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11045 ≤ cle 11187 ℤcz 12507 ...cfz 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-pre-lttri 11120 ax-pre-lttrn 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-neg 11386 df-z 12508 df-uz 12772 df-fz 13447 |
| This theorem is referenced by: fzsn 13505 fz1sbc 13539 fzm1 13546 bccl 14265 hashbc 14396 swrdccatin1 14667 sumsnf 15686 climcnds 15794 prmind2 16632 3prm 16641 vdwlem8 16936 od1 19474 gex1 19506 frgpnabllem1 19788 ply1termlem 26142 coefv0 26187 coemulc 26194 logtayl 26603 leibpilem2 26885 chp1 27111 chtub 27157 2sqlem10 27373 dchrisum0flb 27455 ostth2lem2 27579 axlowdimlem16 28938 sdclem2 37730 0prjspnrel 42609 sumsnd 45014 fourierdlem20 46119 |
| Copyright terms: Public domain | W3C validator |