| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfz1eq | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
| Ref | Expression |
|---|---|
| elfz1eq | ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 13420 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ≤ 𝑁) | |
| 2 | elfzle1 13419 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ≤ 𝐾) | |
| 3 | elfzelz 13416 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ) | |
| 4 | elfzel2 13414 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ) | |
| 5 | zre 12464 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 6 | zre 12464 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 7 | letri3 11190 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) | |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
| 9 | 3, 4, 8 | syl2anc 584 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
| 10 | 1, 2, 9 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 class class class wbr 5089 (class class class)co 7341 ℝcr 10997 ≤ cle 11139 ℤcz 12460 ...cfz 13399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-pre-lttri 11072 ax-pre-lttrn 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-neg 11339 df-z 12461 df-uz 12725 df-fz 13400 |
| This theorem is referenced by: fzsn 13458 fz1sbc 13492 fzm1 13499 bccl 14221 hashbc 14352 swrdccatin1 14624 sumsnf 15642 climcnds 15750 prmind2 16588 3prm 16597 vdwlem8 16892 od1 19464 gex1 19496 frgpnabllem1 19778 ply1termlem 26128 coefv0 26173 coemulc 26180 logtayl 26589 leibpilem2 26871 chp1 27097 chtub 27143 2sqlem10 27359 dchrisum0flb 27441 ostth2lem2 27565 axlowdimlem16 28928 sdclem2 37761 0prjspnrel 42639 sumsnd 45042 fourierdlem20 46144 |
| Copyright terms: Public domain | W3C validator |