MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1eq Structured version   Visualization version   GIF version

Theorem elfz1eq 13494
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
Assertion
Ref Expression
elfz1eq (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)

Proof of Theorem elfz1eq
StepHypRef Expression
1 elfzle2 13487 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝐾𝑁)
2 elfzle1 13486 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝑁𝐾)
3 elfzelz 13483 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ)
4 elfzel2 13481 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ)
5 zre 12544 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
6 zre 12544 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7 letri3 11281 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
85, 6, 7syl2an 596 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
93, 4, 8syl2anc 584 . 2 (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
101, 2, 9mpbir2and 711 1 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5141  (class class class)co 7393  cr 11091  cle 11231  cz 12540  ...cfz 13466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-pre-lttri 11166  ax-pre-lttrn 11167
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-1st 7957  df-2nd 7958  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-neg 11429  df-z 12541  df-uz 12805  df-fz 13467
This theorem is referenced by:  fzsn  13525  fz1sbc  13559  fzm1  13563  bccl  14264  hashbc  14394  swrdccatin1  14657  sumsnf  15671  climcnds  15779  prmind2  16604  3prm  16613  vdwlem8  16903  od1  19391  gex1  19423  frgpnabllem1  19701  ply1termlem  25646  coefv0  25691  coemulc  25698  logtayl  26097  leibpilem2  26373  chp1  26598  chtub  26642  2sqlem10  26858  dchrisum0flb  26940  ostth2lem2  27064  axlowdimlem16  28080  sdclem2  36415  0prjspnrel  41151  sumsnd  43481  fourierdlem20  44616
  Copyright terms: Public domain W3C validator