![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfz1eq | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
Ref | Expression |
---|---|
elfz1eq | ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle2 12662 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ≤ 𝑁) | |
2 | elfzle1 12661 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ≤ 𝐾) | |
3 | elfzelz 12659 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ) | |
4 | elfzel2 12657 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ) | |
5 | zre 11732 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
6 | zre 11732 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
7 | letri3 10462 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) | |
8 | 5, 6, 7 | syl2an 589 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
9 | 3, 4, 8 | syl2anc 579 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
10 | 1, 2, 9 | mpbir2and 703 | 1 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 (class class class)co 6922 ℝcr 10271 ≤ cle 10412 ℤcz 11728 ...cfz 12643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-pre-lttri 10346 ax-pre-lttrn 10347 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-neg 10609 df-z 11729 df-uz 11993 df-fz 12644 |
This theorem is referenced by: fzsn 12700 fz1sbc 12734 fzm1 12738 bccl 13427 hashbc 13551 swrdccatin1 13851 sumsnf 14880 climcnds 14987 prmind2 15803 3prm 15811 vdwlem8 16096 od1 18360 gex1 18390 frgpnabllem1 18662 ply1termlem 24396 coefv0 24441 coemulc 24448 logtayl 24843 leibpilem2 25120 chp1 25345 chtub 25389 2sqlem10 25605 dchrisum0flb 25651 ostth2lem2 25775 axlowdimlem16 26306 sdclem2 34164 sumsnd 40122 fourierdlem20 41275 |
Copyright terms: Public domain | W3C validator |