MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1eq Structured version   Visualization version   GIF version

Theorem elfz1eq 13441
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
Assertion
Ref Expression
elfz1eq (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)

Proof of Theorem elfz1eq
StepHypRef Expression
1 elfzle2 13434 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝐾𝑁)
2 elfzle1 13433 . 2 (𝐾 ∈ (𝑁...𝑁) → 𝑁𝐾)
3 elfzelz 13430 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ)
4 elfzel2 13428 . . 3 (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ)
5 zre 12478 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
6 zre 12478 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
7 letri3 11204 . . . 4 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
85, 6, 7syl2an 596 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
93, 4, 8syl2anc 584 . 2 (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾𝑁𝑁𝐾)))
101, 2, 9mpbir2and 713 1 (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5093  (class class class)co 7352  cr 11011  cle 11153  cz 12474  ...cfz 13413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-pre-lttri 11086  ax-pre-lttrn 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-neg 11353  df-z 12475  df-uz 12739  df-fz 13414
This theorem is referenced by:  fzsn  13472  fz1sbc  13506  fzm1  13513  bccl  14235  hashbc  14366  swrdccatin1  14638  sumsnf  15656  climcnds  15764  prmind2  16602  3prm  16611  vdwlem8  16906  od1  19477  gex1  19509  frgpnabllem1  19791  ply1termlem  26141  coefv0  26186  coemulc  26193  logtayl  26602  leibpilem2  26884  chp1  27110  chtub  27156  2sqlem10  27372  dchrisum0flb  27454  ostth2lem2  27578  axlowdimlem16  28942  sdclem2  37788  0prjspnrel  42726  sumsnd  45128  fourierdlem20  46230
  Copyright terms: Public domain W3C validator