Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfz1eq | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) |
Ref | Expression |
---|---|
elfz1eq | ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle2 12995 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ≤ 𝑁) | |
2 | elfzle1 12994 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ≤ 𝐾) | |
3 | elfzelz 12991 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ) | |
4 | elfzel2 12989 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ) | |
5 | zre 12059 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
6 | zre 12059 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
7 | letri3 10797 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) | |
8 | 5, 6, 7 | syl2an 599 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
9 | 3, 4, 8 | syl2anc 587 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
10 | 1, 2, 9 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 class class class wbr 5027 (class class class)co 7164 ℝcr 10607 ≤ cle 10747 ℤcz 12055 ...cfz 12974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-pre-lttri 10682 ax-pre-lttrn 10683 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-1st 7707 df-2nd 7708 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-neg 10944 df-z 12056 df-uz 12318 df-fz 12975 |
This theorem is referenced by: fzsn 13033 fz1sbc 13067 fzm1 13071 bccl 13767 hashbc 13896 swrdccatin1 14169 sumsnf 15185 climcnds 15292 prmind2 16119 3prm 16128 vdwlem8 16417 od1 18797 gex1 18827 frgpnabllem1 19105 ply1termlem 24944 coefv0 24989 coemulc 24996 logtayl 25395 leibpilem2 25671 chp1 25896 chtub 25940 2sqlem10 26156 dchrisum0flb 26238 ostth2lem2 26362 axlowdimlem16 26895 sdclem2 35512 0prjspnrel 40025 sumsnd 42091 fourierdlem20 43194 |
Copyright terms: Public domain | W3C validator |