|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elfz1eq | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| elfz1eq | ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfzle2 13569 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ≤ 𝑁) | |
| 2 | elfzle1 13568 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ≤ 𝐾) | |
| 3 | elfzelz 13565 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 ∈ ℤ) | |
| 4 | elfzel2 13563 | . . 3 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝑁 ∈ ℤ) | |
| 5 | zre 12619 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 6 | zre 12619 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 7 | letri3 11347 | . . . 4 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) | |
| 8 | 5, 6, 7 | syl2an 596 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) | 
| 9 | 3, 4, 8 | syl2anc 584 | . 2 ⊢ (𝐾 ∈ (𝑁...𝑁) → (𝐾 = 𝑁 ↔ (𝐾 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) | 
| 10 | 1, 2, 9 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ (𝑁...𝑁) → 𝐾 = 𝑁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 ≤ cle 11297 ℤcz 12615 ...cfz 13548 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-neg 11496 df-z 12616 df-uz 12880 df-fz 13549 | 
| This theorem is referenced by: fzsn 13607 fz1sbc 13641 fzm1 13648 bccl 14362 hashbc 14493 swrdccatin1 14764 sumsnf 15780 climcnds 15888 prmind2 16723 3prm 16732 vdwlem8 17027 od1 19578 gex1 19610 frgpnabllem1 19892 ply1termlem 26243 coefv0 26288 coemulc 26295 logtayl 26703 leibpilem2 26985 chp1 27211 chtub 27257 2sqlem10 27473 dchrisum0flb 27555 ostth2lem2 27679 axlowdimlem16 28973 sdclem2 37750 0prjspnrel 42642 sumsnd 45036 fourierdlem20 46147 | 
| Copyright terms: Public domain | W3C validator |