MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2fzr Structured version   Visualization version   GIF version

Theorem peano2fzr 13362
Description: A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.)
Assertion
Ref Expression
peano2fzr ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))

Proof of Theorem peano2fzr
StepHypRef Expression
1 simpl 483 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (ℤ𝑀))
2 eluzelz 12685 . . 3 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3 elfzuz3 13346 . . 3 ((𝐾 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐾 + 1)))
4 peano2uzr 12736 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝐾 + 1))) → 𝑁 ∈ (ℤ𝐾))
52, 3, 4syl2an 596 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝐾))
6 elfzuzb 13343 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
71, 5, 6sylanbrc 583 1 ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  cfv 6473  (class class class)co 7329  1c1 10965   + caddc 10967  cz 12412  cuz 12675  ...cfz 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333
This theorem is referenced by:  fzsuc  13396  peano2fzor  13587  seqcl2  13834  seqfveq2  13838  seqshft2  13842  monoord  13846  seqsplit  13849  seqid2  13862  seqhomo  13863  hashf1  14263  imasdsf1olem  23624  1smat1  31965  subfacp1lem6  33359  cvmliftlem7  33465  cvmliftlem10  33468  mettrifi  36013  monoordxrv  43346  fmuldfeq  43449  smonoord  45163
  Copyright terms: Public domain W3C validator