Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzom1elp1fzo | Structured version Visualization version GIF version |
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
Ref | Expression |
---|---|
elfzom1elp1fzo | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzofz 13414 | . . . . . . 7 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1))) | |
2 | elfzuz2 13272 | . . . . . . 7 ⊢ (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ≥‘0)) | |
3 | elnn0uz 12634 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) | |
4 | zcn 12335 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | 4 | anim1i 615 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) |
6 | elnnnn0 12287 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | |
7 | 5, 6 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ) |
8 | 7 | expcom 414 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
9 | 3, 8 | sylbir 234 | . . . . . . 7 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
10 | 1, 2, 9 | 3syl 18 | . . . . . 6 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
11 | 10 | impcom 408 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ) |
12 | 1nn0 12260 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
14 | nnnn0 12251 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | nnge1 12012 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
16 | 13, 14, 15 | 3jca 1127 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
17 | 11, 16 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
18 | elfz2nn0 13358 | . . . 4 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
19 | 17, 18 | sylibr 233 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁)) |
20 | fzossrbm1 13427 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
22 | fzossfz 13417 | . . . . . 6 ⊢ (0..^𝑁) ⊆ (0...𝑁) | |
23 | 21, 22 | sstrdi 3938 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁)) |
24 | simpr 485 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1))) | |
25 | 23, 24 | jca 512 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1)))) |
26 | ssel2 3921 | . . . 4 ⊢ (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁)) | |
27 | elfzubelfz 13279 | . . . 4 ⊢ (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁)) | |
28 | 25, 26, 27 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁)) |
29 | 19, 28 | jca 512 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) |
30 | elfzodifsumelfzo 13464 | . 2 ⊢ ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁))) | |
31 | 29, 24, 30 | sylc 65 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 ‘cfv 6432 (class class class)co 7272 ℂcc 10880 0cc0 10882 1c1 10883 + caddc 10885 ≤ cle 11021 − cmin 11216 ℕcn 11984 ℕ0cn0 12244 ℤcz 12330 ℤ≥cuz 12593 ...cfz 13250 ..^cfzo 13393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-n0 12245 df-z 12331 df-uz 12594 df-fz 13251 df-fzo 13394 |
This theorem is referenced by: elfzom1p1elfzo 13478 clwwlkccatlem 28362 clwlkclwwlk 28375 clwwlkinwwlk 28413 clwwlkf 28420 clwwlkwwlksb 28427 cycpmco2lem7 31408 |
Copyright terms: Public domain | W3C validator |