![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzom1elp1fzo | Structured version Visualization version GIF version |
Description: Membership of an integer incremented by one in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Proof shortened by AV, 5-Jan-2020.) |
Ref | Expression |
---|---|
elfzom1elp1fzo | ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzofz 13680 | . . . . . . 7 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → 𝐼 ∈ (0...(𝑁 − 1))) | |
2 | elfzuz2 13538 | . . . . . . 7 ⊢ (𝐼 ∈ (0...(𝑁 − 1)) → (𝑁 − 1) ∈ (ℤ≥‘0)) | |
3 | elnn0uz 12897 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 ↔ (𝑁 − 1) ∈ (ℤ≥‘0)) | |
4 | zcn 12593 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
5 | 4 | anim1i 614 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) |
6 | elnnnn0 12545 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℂ ∧ (𝑁 − 1) ∈ ℕ0)) | |
7 | 5, 6 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → 𝑁 ∈ ℕ) |
8 | 7 | expcom 413 | . . . . . . . 8 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
9 | 3, 8 | sylbir 234 | . . . . . . 7 ⊢ ((𝑁 − 1) ∈ (ℤ≥‘0) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
10 | 1, 2, 9 | 3syl 18 | . . . . . 6 ⊢ (𝐼 ∈ (0..^(𝑁 − 1)) → (𝑁 ∈ ℤ → 𝑁 ∈ ℕ)) |
11 | 10 | impcom 407 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ ℕ) |
12 | 1nn0 12518 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℕ0) |
14 | nnnn0 12509 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
15 | nnge1 12270 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ≤ 𝑁) | |
16 | 13, 14, 15 | 3jca 1126 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
17 | 11, 16 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) |
18 | elfz2nn0 13624 | . . . 4 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁)) | |
19 | 17, 18 | sylibr 233 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 1 ∈ (0...𝑁)) |
20 | fzossrbm1 13693 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) | |
21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁)) |
22 | fzossfz 13683 | . . . . . 6 ⊢ (0..^𝑁) ⊆ (0...𝑁) | |
23 | 21, 22 | sstrdi 3992 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (0..^(𝑁 − 1)) ⊆ (0...𝑁)) |
24 | simpr 484 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0..^(𝑁 − 1))) | |
25 | 23, 24 | jca 511 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → ((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1)))) |
26 | ssel2 3975 | . . . 4 ⊢ (((0..^(𝑁 − 1)) ⊆ (0...𝑁) ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝐼 ∈ (0...𝑁)) | |
27 | elfzubelfz 13545 | . . . 4 ⊢ (𝐼 ∈ (0...𝑁) → 𝑁 ∈ (0...𝑁)) | |
28 | 25, 26, 27 | 3syl 18 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → 𝑁 ∈ (0...𝑁)) |
29 | 19, 28 | jca 511 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) |
30 | elfzodifsumelfzo 13730 | . 2 ⊢ ((1 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁)) → (𝐼 ∈ (0..^(𝑁 − 1)) → (𝐼 + 1) ∈ (0..^𝑁))) | |
31 | 29, 24, 30 | sylc 65 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(𝑁 − 1))) → (𝐼 + 1) ∈ (0..^𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ⊆ wss 3947 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 ℂcc 11136 0cc0 11138 1c1 11139 + caddc 11141 ≤ cle 11279 − cmin 11474 ℕcn 12242 ℕ0cn0 12502 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13516 ..^cfzo 13659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 |
This theorem is referenced by: elfzom1p1elfzo 13744 clwwlkccatlem 29798 clwlkclwwlk 29811 clwwlkinwwlk 29849 clwwlkf 29856 clwwlkwwlksb 29863 cycpmco2lem7 32853 |
Copyright terms: Public domain | W3C validator |