MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt2 Structured version   Visualization version   GIF version

Theorem ello1mpt2 15495
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ello1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ello1mpt2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝐶,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt2
StepHypRef Expression
1 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 ello1mpt.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
31, 2ello1mpt 15494 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
4 ello1d.3 . . . . 5 (𝜑𝐶 ∈ ℝ)
5 rexico 15327 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐶 ∈ ℝ) → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
61, 4, 5syl2anc 584 . . . 4 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
76rexbidv 3158 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
8 rexcom 3267 . . 3 (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
9 rexcom 3267 . . 3 (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
107, 8, 93bitr4g 314 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
113, 10bitr4d 282 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cmpt 5191  (class class class)co 7390  cr 11074  +∞cpnf 11212  cle 11216  [,)cico 13315  ≤𝑂(1)clo1 15460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ico 13319  df-lo1 15464
This theorem is referenced by:  lo1bdd2  15497  elo1mpt2  15508
  Copyright terms: Public domain W3C validator