MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt2 Structured version   Visualization version   GIF version

Theorem ello1mpt2 15470
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ello1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ello1mpt2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝐶,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt2
StepHypRef Expression
1 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 ello1mpt.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
31, 2ello1mpt 15469 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
4 ello1d.3 . . . . 5 (𝜑𝐶 ∈ ℝ)
5 rexico 15304 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐶 ∈ ℝ) → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
61, 4, 5syl2anc 582 . . . 4 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
76rexbidv 3176 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
8 rexcom 3285 . . 3 (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
9 rexcom 3285 . . 3 (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
107, 8, 93bitr4g 313 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
113, 10bitr4d 281 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2104  wral 3059  wrex 3068  wss 3947   class class class wbr 5147  cmpt 5230  (class class class)co 7411  cr 11111  +∞cpnf 11249  cle 11253  [,)cico 13330  ≤𝑂(1)clo1 15435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-ico 13334  df-lo1 15439
This theorem is referenced by:  lo1bdd2  15472  elo1mpt2  15483
  Copyright terms: Public domain W3C validator