MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt2 Structured version   Visualization version   GIF version

Theorem ello1mpt2 15429
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ello1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ello1mpt2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝐶,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt2
StepHypRef Expression
1 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 ello1mpt.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
31, 2ello1mpt 15428 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
4 ello1d.3 . . . . 5 (𝜑𝐶 ∈ ℝ)
5 rexico 15261 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐶 ∈ ℝ) → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
61, 4, 5syl2anc 584 . . . 4 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
76rexbidv 3156 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
8 rexcom 3261 . . 3 (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
9 rexcom 3261 . . 3 (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
107, 8, 93bitr4g 314 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
113, 10bitr4d 282 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  (class class class)co 7346  cr 11005  +∞cpnf 11143  cle 11147  [,)cico 13247  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-lo1 15398
This theorem is referenced by:  lo1bdd2  15431  elo1mpt2  15442
  Copyright terms: Public domain W3C validator