MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1mpt2 Structured version   Visualization version   GIF version

Theorem ello1mpt2 15231
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
ello1mpt.1 (𝜑𝐴 ⊆ ℝ)
ello1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
ello1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
ello1mpt2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝐶,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ello1mpt2
StepHypRef Expression
1 ello1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 ello1mpt.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
31, 2ello1mpt 15230 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
4 ello1d.3 . . . . 5 (𝜑𝐶 ∈ ℝ)
5 rexico 15065 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐶 ∈ ℝ) → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
61, 4, 5syl2anc 584 . . . 4 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
76rexbidv 3226 . . 3 (𝜑 → (∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
8 rexcom 3234 . . 3 (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ (𝐶[,)+∞)∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
9 rexcom 3234 . . 3 (∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚))
107, 8, 93bitr4g 314 . 2 (𝜑 → (∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
113, 10bitr4d 281 1 (𝜑 → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥𝐵𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  cmpt 5157  (class class class)co 7275  cr 10870  +∞cpnf 11006  cle 11010  [,)cico 13081  ≤𝑂(1)clo1 15196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-lo1 15200
This theorem is referenced by:  lo1bdd2  15233  elo1mpt2  15244
  Copyright terms: Public domain W3C validator