MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elo1mpt2 Structured version   Visualization version   GIF version

Theorem elo1mpt2 15475
Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 12-May-2016.) (Proof shortened by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
elo1mpt.1 (𝜑𝐴 ⊆ ℝ)
elo1mpt.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
elo1d.3 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
elo1mpt2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘𝐵) ≤ 𝑚)))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑦   𝐶,𝑚,𝑥,𝑦   𝜑,𝑚,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elo1mpt2
StepHypRef Expression
1 elo1mpt.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
21lo1o12 15473 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1)))
3 elo1mpt.1 . . 3 (𝜑𝐴 ⊆ ℝ)
41abscld 15379 . . 3 ((𝜑𝑥𝐴) → (abs‘𝐵) ∈ ℝ)
5 elo1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
63, 4, 5ello1mpt2 15462 . 2 (𝜑 → ((𝑥𝐴 ↦ (abs‘𝐵)) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘𝐵) ≤ 𝑚)))
72, 6bitrd 279 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ (𝐶[,)+∞)∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (abs‘𝐵) ≤ 𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107  wral 3062  wrex 3071  wss 3947   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7404  cc 11104  cr 11105  +∞cpnf 11241  cle 11245  [,)cico 13322  abscabs 15177  𝑂(1)co1 15426  ≤𝑂(1)clo1 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-o1 15430  df-lo1 15431
This theorem is referenced by:  o1fsum  15755
  Copyright terms: Public domain W3C validator