MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zdis Structured version   Visualization version   GIF version

Theorem zdis 23979
Description: The integers are a discrete set in the topology on . (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
zdis (𝐽t ℤ) = 𝒫 ℤ

Proof of Theorem zdis
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restsspw 17142 . 2 (𝐽t ℤ) ⊆ 𝒫 ℤ
2 elpwi 4542 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℤ → 𝑥 ⊆ ℤ)
32sselda 3921 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℤ)
43zcnd 12427 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℂ)
5 cnxmet 23936 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
6 1xr 11034 . . . . . . . 8 1 ∈ ℝ*
7 recld2.1 . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
87cnfldtopn 23945 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
98blopn 23656 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
105, 6, 9mp3an13 1451 . . . . . . 7 (𝑦 ∈ ℂ → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
117cnfldtop 23947 . . . . . . . 8 𝐽 ∈ Top
12 zex 12328 . . . . . . . 8 ℤ ∈ V
13 elrestr 17139 . . . . . . . 8 ((𝐽 ∈ Top ∧ ℤ ∈ V ∧ (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
1411, 12, 13mp3an12 1450 . . . . . . 7 ((𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽 → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
154, 10, 143syl 18 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
16 1rp 12734 . . . . . . . . 9 1 ∈ ℝ+
17 blcntr 23566 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
185, 16, 17mp3an13 1451 . . . . . . . 8 (𝑦 ∈ ℂ → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
194, 18syl 17 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
2019, 3elind 4128 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
214adantr 481 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℂ)
22 simpr 485 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
2322elin2d 4133 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℤ)
2423zcnd 12427 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℂ)
253adantr 481 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℤ)
2625, 23zsubcld 12431 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℤ)
2726zcnd 12427 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℂ)
28 eqid 2738 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 23934 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3021, 24, 29syl2anc 584 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3122elin1d 4132 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1))
32 elbl2 23543 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
335, 6, 32mpanl12 699 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3421, 24, 33syl2anc 584 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3531, 34mpbid 231 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) < 1)
3630, 35eqbrtrrd 5098 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) < 1)
37 nn0abscl 15024 . . . . . . . . . . . . 13 ((𝑦𝑧) ∈ ℤ → (abs‘(𝑦𝑧)) ∈ ℕ0)
38 nn0lt10b 12382 . . . . . . . . . . . . 13 ((abs‘(𝑦𝑧)) ∈ ℕ0 → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
3926, 37, 383syl 18 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
4036, 39mpbid 231 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) = 0)
4127, 40abs00d 15158 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) = 0)
4221, 24, 41subeq0d 11340 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 = 𝑧)
43 simplr 766 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦𝑥)
4442, 43eqeltrrd 2840 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧𝑥)
4544ex 413 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → (𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → 𝑧𝑥))
4645ssrdv 3927 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)
47 eleq2 2827 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑦𝑧𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)))
48 sseq1 3946 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑧𝑥 ↔ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥))
4947, 48anbi12d 631 . . . . . . 7 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → ((𝑦𝑧𝑧𝑥) ↔ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)))
5049rspcev 3561 . . . . . 6 ((((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ) ∧ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5115, 20, 46, 50syl12anc 834 . . . . 5 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5251ralrimiva 3103 . . . 4 (𝑥 ∈ 𝒫 ℤ → ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
53 resttop 22311 . . . . . 6 ((𝐽 ∈ Top ∧ ℤ ∈ V) → (𝐽t ℤ) ∈ Top)
5411, 12, 53mp2an 689 . . . . 5 (𝐽t ℤ) ∈ Top
55 eltop2 22125 . . . . 5 ((𝐽t ℤ) ∈ Top → (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥)))
5654, 55ax-mp 5 . . . 4 (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5752, 56sylibr 233 . . 3 (𝑥 ∈ 𝒫 ℤ → 𝑥 ∈ (𝐽t ℤ))
5857ssriv 3925 . 2 𝒫 ℤ ⊆ (𝐽t ℤ)
591, 58eqssi 3937 1 (𝐽t ℤ) = 𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  ccom 5593  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872  *cxr 11008   < clt 11009  cmin 11205  0cn0 12233  cz 12319  +crp 12730  abscabs 14945  t crest 17131  TopOpenctopn 17132  ∞Metcxmet 20582  ballcbl 20584  fldccnfld 20597  Topctop 22042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474
This theorem is referenced by:  sszcld  23980
  Copyright terms: Public domain W3C validator