Step | Hyp | Ref
| Expression |
1 | | restsspw 16478 |
. 2
⊢ (𝐽 ↾t ℤ)
⊆ 𝒫 ℤ |
2 | | elpwi 4388 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 ℤ →
𝑥 ⊆
ℤ) |
3 | 2 | sselda 3820 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ ℤ) |
4 | 3 | zcnd 11835 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ ℂ) |
5 | | cnxmet 22984 |
. . . . . . . 8
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
6 | | 1rp 12141 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
7 | | rpxr 12148 |
. . . . . . . . 9
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
9 | | recld2.1 |
. . . . . . . . . 10
⊢ 𝐽 =
(TopOpen‘ℂfld) |
10 | 9 | cnfldtopn 22993 |
. . . . . . . . 9
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
11 | 10 | blopn 22713 |
. . . . . . . 8
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈
ℝ*) → (𝑦(ball‘(abs ∘ − ))1) ∈
𝐽) |
12 | 5, 8, 11 | mp3an13 1525 |
. . . . . . 7
⊢ (𝑦 ∈ ℂ → (𝑦(ball‘(abs ∘ −
))1) ∈ 𝐽) |
13 | 9 | cnfldtop 22995 |
. . . . . . . 8
⊢ 𝐽 ∈ Top |
14 | | zex 11737 |
. . . . . . . 8
⊢ ℤ
∈ V |
15 | | elrestr 16475 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ ℤ ∈
V ∧ (𝑦(ball‘(abs
∘ − ))1) ∈ 𝐽) → ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) ∈ (𝐽
↾t ℤ)) |
16 | 13, 14, 15 | mp3an12 1524 |
. . . . . . 7
⊢ ((𝑦(ball‘(abs ∘ −
))1) ∈ 𝐽 →
((𝑦(ball‘(abs ∘
− ))1) ∩ ℤ) ∈ (𝐽 ↾t
ℤ)) |
17 | 4, 12, 16 | 3syl 18 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) ∈ (𝐽
↾t ℤ)) |
18 | | blcntr 22626 |
. . . . . . . . 9
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈
ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ −
))1)) |
19 | 5, 6, 18 | mp3an13 1525 |
. . . . . . . 8
⊢ (𝑦 ∈ ℂ → 𝑦 ∈ (𝑦(ball‘(abs ∘ −
))1)) |
20 | 4, 19 | syl 17 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ (𝑦(ball‘(abs ∘ −
))1)) |
21 | 20, 3 | elind 4020 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → 𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) |
22 | 4 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑦 ∈
ℂ) |
23 | | inss2 4053 |
. . . . . . . . . . . 12
⊢ ((𝑦(ball‘(abs ∘ −
))1) ∩ ℤ) ⊆ ℤ |
24 | | simpr 479 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑧 ∈
((𝑦(ball‘(abs ∘
− ))1) ∩ ℤ)) |
25 | 23, 24 | sseldi 3818 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑧 ∈
ℤ) |
26 | 25 | zcnd 11835 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑧 ∈
ℂ) |
27 | 3 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑦 ∈
ℤ) |
28 | 27, 25 | zsubcld 11839 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (𝑦 −
𝑧) ∈
ℤ) |
29 | 28 | zcnd 11835 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (𝑦 −
𝑧) ∈
ℂ) |
30 | | eqid 2777 |
. . . . . . . . . . . . . . 15
⊢ (abs
∘ − ) = (abs ∘ − ) |
31 | 30 | cnmetdval 22982 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦 − 𝑧))) |
32 | 22, 26, 31 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (𝑦(abs
∘ − )𝑧) =
(abs‘(𝑦 − 𝑧))) |
33 | | inss1 4052 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦(ball‘(abs ∘ −
))1) ∩ ℤ) ⊆ (𝑦(ball‘(abs ∘ −
))1) |
34 | 33, 24 | sseldi 3818 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑧 ∈
(𝑦(ball‘(abs ∘
− ))1)) |
35 | | elbl2 22603 |
. . . . . . . . . . . . . . . 16
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔
(𝑦(abs ∘ −
)𝑧) <
1)) |
36 | 5, 8, 35 | mpanl12 692 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔
(𝑦(abs ∘ −
)𝑧) <
1)) |
37 | 22, 26, 36 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (𝑧 ∈
(𝑦(ball‘(abs ∘
− ))1) ↔ (𝑦(abs
∘ − )𝑧) <
1)) |
38 | 34, 37 | mpbid 224 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (𝑦(abs
∘ − )𝑧) <
1) |
39 | 32, 38 | eqbrtrrd 4910 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (abs‘(𝑦 − 𝑧)) < 1) |
40 | | nn0abscl 14459 |
. . . . . . . . . . . . 13
⊢ ((𝑦 − 𝑧) ∈ ℤ → (abs‘(𝑦 − 𝑧)) ∈
ℕ0) |
41 | | nn0lt10b 11791 |
. . . . . . . . . . . . 13
⊢
((abs‘(𝑦
− 𝑧)) ∈
ℕ0 → ((abs‘(𝑦 − 𝑧)) < 1 ↔ (abs‘(𝑦 − 𝑧)) = 0)) |
42 | 28, 40, 41 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → ((abs‘(𝑦 − 𝑧)) < 1 ↔ (abs‘(𝑦 − 𝑧)) = 0)) |
43 | 39, 42 | mpbid 224 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (abs‘(𝑦 − 𝑧)) = 0) |
44 | 29, 43 | abs00d 14593 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → (𝑦 −
𝑧) = 0) |
45 | 22, 26, 44 | subeq0d 10742 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑦 = 𝑧) |
46 | | simplr 759 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑦 ∈
𝑥) |
47 | 45, 46 | eqeltrrd 2859 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ)) → 𝑧 ∈
𝑥) |
48 | 47 | ex 403 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → (𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) → 𝑧 ∈
𝑥)) |
49 | 48 | ssrdv 3826 |
. . . . . 6
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) ⊆ 𝑥) |
50 | | eleq2 2847 |
. . . . . . . 8
⊢ (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) → (𝑦 ∈
𝑧 ↔ 𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ))) |
51 | | sseq1 3844 |
. . . . . . . 8
⊢ (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) → (𝑧 ⊆
𝑥 ↔ ((𝑦(ball‘(abs ∘ −
))1) ∩ ℤ) ⊆ 𝑥)) |
52 | 50, 51 | anbi12d 624 |
. . . . . . 7
⊢ (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) → ((𝑦 ∈
𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) ⊆ 𝑥))) |
53 | 52 | rspcev 3510 |
. . . . . 6
⊢ ((((𝑦(ball‘(abs ∘ −
))1) ∩ ℤ) ∈ (𝐽 ↾t ℤ) ∧ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩
ℤ) ⊆ 𝑥)) →
∃𝑧 ∈ (𝐽 ↾t
ℤ)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
54 | 17, 21, 49, 53 | syl12anc 827 |
. . . . 5
⊢ ((𝑥 ∈ 𝒫 ℤ ∧
𝑦 ∈ 𝑥) → ∃𝑧 ∈ (𝐽 ↾t ℤ)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
55 | 54 | ralrimiva 3147 |
. . . 4
⊢ (𝑥 ∈ 𝒫 ℤ →
∀𝑦 ∈ 𝑥 ∃𝑧 ∈ (𝐽 ↾t ℤ)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
56 | | resttop 21372 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ ℤ ∈
V) → (𝐽
↾t ℤ) ∈ Top) |
57 | 13, 14, 56 | mp2an 682 |
. . . . 5
⊢ (𝐽 ↾t ℤ)
∈ Top |
58 | | eltop2 21187 |
. . . . 5
⊢ ((𝐽 ↾t ℤ)
∈ Top → (𝑥 ∈
(𝐽 ↾t
ℤ) ↔ ∀𝑦
∈ 𝑥 ∃𝑧 ∈ (𝐽 ↾t ℤ)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
59 | 57, 58 | ax-mp 5 |
. . . 4
⊢ (𝑥 ∈ (𝐽 ↾t ℤ) ↔
∀𝑦 ∈ 𝑥 ∃𝑧 ∈ (𝐽 ↾t ℤ)(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
60 | 55, 59 | sylibr 226 |
. . 3
⊢ (𝑥 ∈ 𝒫 ℤ →
𝑥 ∈ (𝐽 ↾t
ℤ)) |
61 | 60 | ssriv 3824 |
. 2
⊢ 𝒫
ℤ ⊆ (𝐽
↾t ℤ) |
62 | 1, 61 | eqssi 3836 |
1
⊢ (𝐽 ↾t ℤ) =
𝒫 ℤ |