MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zdis Structured version   Visualization version   GIF version

Theorem zdis 23418
Description: The integers are a discrete set in the topology on . (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
zdis (𝐽t ℤ) = 𝒫 ℤ

Proof of Theorem zdis
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restsspw 16699 . 2 (𝐽t ℤ) ⊆ 𝒫 ℤ
2 elpwi 4551 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℤ → 𝑥 ⊆ ℤ)
32sselda 3967 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℤ)
43zcnd 12082 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℂ)
5 cnxmet 23375 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
6 1xr 10694 . . . . . . . 8 1 ∈ ℝ*
7 recld2.1 . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
87cnfldtopn 23384 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
98blopn 23104 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
105, 6, 9mp3an13 1448 . . . . . . 7 (𝑦 ∈ ℂ → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
117cnfldtop 23386 . . . . . . . 8 𝐽 ∈ Top
12 zex 11984 . . . . . . . 8 ℤ ∈ V
13 elrestr 16696 . . . . . . . 8 ((𝐽 ∈ Top ∧ ℤ ∈ V ∧ (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
1411, 12, 13mp3an12 1447 . . . . . . 7 ((𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽 → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
154, 10, 143syl 18 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
16 1rp 12387 . . . . . . . . 9 1 ∈ ℝ+
17 blcntr 23017 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
185, 16, 17mp3an13 1448 . . . . . . . 8 (𝑦 ∈ ℂ → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
194, 18syl 17 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
2019, 3elind 4171 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
214adantr 483 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℂ)
22 simpr 487 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
2322elin2d 4176 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℤ)
2423zcnd 12082 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℂ)
253adantr 483 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℤ)
2625, 23zsubcld 12086 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℤ)
2726zcnd 12082 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℂ)
28 eqid 2821 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 23373 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3021, 24, 29syl2anc 586 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3122elin1d 4175 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1))
32 elbl2 22994 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
335, 6, 32mpanl12 700 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3421, 24, 33syl2anc 586 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3531, 34mpbid 234 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) < 1)
3630, 35eqbrtrrd 5083 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) < 1)
37 nn0abscl 14666 . . . . . . . . . . . . 13 ((𝑦𝑧) ∈ ℤ → (abs‘(𝑦𝑧)) ∈ ℕ0)
38 nn0lt10b 12038 . . . . . . . . . . . . 13 ((abs‘(𝑦𝑧)) ∈ ℕ0 → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
3926, 37, 383syl 18 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
4036, 39mpbid 234 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) = 0)
4127, 40abs00d 14800 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) = 0)
4221, 24, 41subeq0d 10999 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 = 𝑧)
43 simplr 767 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦𝑥)
4442, 43eqeltrrd 2914 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧𝑥)
4544ex 415 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → (𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → 𝑧𝑥))
4645ssrdv 3973 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)
47 eleq2 2901 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑦𝑧𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)))
48 sseq1 3992 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑧𝑥 ↔ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥))
4947, 48anbi12d 632 . . . . . . 7 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → ((𝑦𝑧𝑧𝑥) ↔ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)))
5049rspcev 3623 . . . . . 6 ((((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ) ∧ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5115, 20, 46, 50syl12anc 834 . . . . 5 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5251ralrimiva 3182 . . . 4 (𝑥 ∈ 𝒫 ℤ → ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
53 resttop 21762 . . . . . 6 ((𝐽 ∈ Top ∧ ℤ ∈ V) → (𝐽t ℤ) ∈ Top)
5411, 12, 53mp2an 690 . . . . 5 (𝐽t ℤ) ∈ Top
55 eltop2 21577 . . . . 5 ((𝐽t ℤ) ∈ Top → (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥)))
5654, 55ax-mp 5 . . . 4 (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5752, 56sylibr 236 . . 3 (𝑥 ∈ 𝒫 ℤ → 𝑥 ∈ (𝐽t ℤ))
5857ssriv 3971 . 2 𝒫 ℤ ⊆ (𝐽t ℤ)
591, 58eqssi 3983 1 (𝐽t ℤ) = 𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  Vcvv 3495  cin 3935  wss 3936  𝒫 cpw 4539   class class class wbr 5059  ccom 5554  cfv 6350  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532  *cxr 10668   < clt 10669  cmin 10864  0cn0 11891  cz 11975  +crp 12383  abscabs 14587  t crest 16688  TopOpenctopn 16689  ∞Metcxmet 20524  ballcbl 20526  fldccnfld 20539  Topctop 21495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fi 8869  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-xms 22924  df-ms 22925
This theorem is referenced by:  sszcld  23419
  Copyright terms: Public domain W3C validator