MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zdis Structured version   Visualization version   GIF version

Theorem zdis 24730
Description: The integers are a discrete set in the topology on . (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
zdis (𝐽t ℤ) = 𝒫 ℤ

Proof of Theorem zdis
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restsspw 17332 . 2 (𝐽t ℤ) ⊆ 𝒫 ℤ
2 elpwi 4557 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℤ → 𝑥 ⊆ ℤ)
32sselda 3934 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℤ)
43zcnd 12575 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℂ)
5 cnxmet 24685 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
6 1xr 11168 . . . . . . . 8 1 ∈ ℝ*
7 recld2.1 . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
87cnfldtopn 24694 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
98blopn 24413 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
105, 6, 9mp3an13 1454 . . . . . . 7 (𝑦 ∈ ℂ → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
117cnfldtop 24696 . . . . . . . 8 𝐽 ∈ Top
12 zex 12474 . . . . . . . 8 ℤ ∈ V
13 elrestr 17329 . . . . . . . 8 ((𝐽 ∈ Top ∧ ℤ ∈ V ∧ (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
1411, 12, 13mp3an12 1453 . . . . . . 7 ((𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽 → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
154, 10, 143syl 18 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
16 1rp 12891 . . . . . . . . 9 1 ∈ ℝ+
17 blcntr 24326 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
185, 16, 17mp3an13 1454 . . . . . . . 8 (𝑦 ∈ ℂ → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
194, 18syl 17 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
2019, 3elind 4150 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
214adantr 480 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℂ)
22 simpr 484 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
2322elin2d 4155 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℤ)
2423zcnd 12575 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℂ)
253adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℤ)
2625, 23zsubcld 12579 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℤ)
2726zcnd 12575 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℂ)
28 eqid 2731 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
2928cnmetdval 24683 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3021, 24, 29syl2anc 584 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3122elin1d 4154 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1))
32 elbl2 24303 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
335, 6, 32mpanl12 702 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3421, 24, 33syl2anc 584 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3531, 34mpbid 232 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) < 1)
3630, 35eqbrtrrd 5115 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) < 1)
37 nn0abscl 15216 . . . . . . . . . . . . 13 ((𝑦𝑧) ∈ ℤ → (abs‘(𝑦𝑧)) ∈ ℕ0)
38 nn0lt10b 12532 . . . . . . . . . . . . 13 ((abs‘(𝑦𝑧)) ∈ ℕ0 → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
3926, 37, 383syl 18 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
4036, 39mpbid 232 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) = 0)
4127, 40abs00d 15353 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) = 0)
4221, 24, 41subeq0d 11477 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 = 𝑧)
43 simplr 768 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦𝑥)
4442, 43eqeltrrd 2832 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧𝑥)
4544ex 412 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → (𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → 𝑧𝑥))
4645ssrdv 3940 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)
47 eleq2 2820 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑦𝑧𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)))
48 sseq1 3960 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑧𝑥 ↔ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥))
4947, 48anbi12d 632 . . . . . . 7 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → ((𝑦𝑧𝑧𝑥) ↔ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)))
5049rspcev 3577 . . . . . 6 ((((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ) ∧ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5115, 20, 46, 50syl12anc 836 . . . . 5 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5251ralrimiva 3124 . . . 4 (𝑥 ∈ 𝒫 ℤ → ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
53 resttop 23073 . . . . . 6 ((𝐽 ∈ Top ∧ ℤ ∈ V) → (𝐽t ℤ) ∈ Top)
5411, 12, 53mp2an 692 . . . . 5 (𝐽t ℤ) ∈ Top
55 eltop2 22888 . . . . 5 ((𝐽t ℤ) ∈ Top → (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥)))
5654, 55ax-mp 5 . . . 4 (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5752, 56sylibr 234 . . 3 (𝑥 ∈ 𝒫 ℤ → 𝑥 ∈ (𝐽t ℤ))
5857ssriv 3938 . 2 𝒫 ℤ ⊆ (𝐽t ℤ)
591, 58eqssi 3951 1 (𝐽t ℤ) = 𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3901  wss 3902  𝒫 cpw 4550   class class class wbr 5091  ccom 5620  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004  *cxr 11142   < clt 11143  cmin 11341  0cn0 12378  cz 12465  +crp 12887  abscabs 15138  t crest 17321  TopOpenctopn 17322  ∞Metcxmet 21274  ballcbl 21276  fldccnfld 21289  Topctop 22806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-starv 17173  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-rest 17323  df-topn 17324  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-xms 24233  df-ms 24234
This theorem is referenced by:  sszcld  24731
  Copyright terms: Public domain W3C validator