| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1varpw | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 22261, the proof is shorter using evls1varpw 22230 instead of proving it directly. (Contributed by AV, 15-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
| evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
| evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| evl1varpw | ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
| 2 | evl1varpw.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | evl1fval1 22234 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐵)) |
| 5 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 6 | evl1varpw.g | . . . . . . . 8 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 7 | evl1varpw.w | . . . . . . . . 9 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 8 | 7 | fveq2i 6829 | . . . . . . . 8 ⊢ (mulGrp‘𝑊) = (mulGrp‘(Poly1‘𝑅)) |
| 9 | 6, 8 | eqtri 2752 | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘(Poly1‘𝑅)) |
| 10 | 9 | fveq2i 6829 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘(mulGrp‘(Poly1‘𝑅))) |
| 11 | 5, 10 | eqtri 2752 | . . . . 5 ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝑅))) |
| 12 | evl1varpw.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 13 | 2 | ressid 17173 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
| 14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑅 ↾s 𝐵) = 𝑅) |
| 15 | 14 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐵)) |
| 16 | 15 | fveq2d 6830 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐵))) |
| 17 | 16 | fveq2d 6830 | . . . . . 6 ⊢ (𝜑 → (mulGrp‘(Poly1‘𝑅)) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) |
| 18 | 17 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(Poly1‘𝑅))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
| 19 | 11, 18 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → ↑ = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
| 20 | eqidd 2730 | . . . 4 ⊢ (𝜑 → 𝑁 = 𝑁) | |
| 21 | evl1varpw.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
| 22 | 15 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (var1‘𝑅) = (var1‘(𝑅 ↾s 𝐵))) |
| 23 | 21, 22 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝑋 = (var1‘(𝑅 ↾s 𝐵))) |
| 24 | 19, 20, 23 | oveq123d 7374 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝑋) = (𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) |
| 25 | 4, 24 | fveq12d 6833 | . 2 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵))))) |
| 26 | eqid 2729 | . . 3 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
| 27 | eqid 2729 | . . 3 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
| 28 | eqid 2729 | . . 3 ⊢ (Poly1‘(𝑅 ↾s 𝐵)) = (Poly1‘(𝑅 ↾s 𝐵)) | |
| 29 | eqid 2729 | . . 3 ⊢ (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) | |
| 30 | eqid 2729 | . . 3 ⊢ (var1‘(𝑅 ↾s 𝐵)) = (var1‘(𝑅 ↾s 𝐵)) | |
| 31 | eqid 2729 | . . 3 ⊢ (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) | |
| 32 | crngring 20148 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 33 | 2 | subrgid 20476 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
| 34 | 12, 32, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
| 35 | evl1varpw.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 36 | 26, 27, 28, 29, 30, 2, 31, 12, 34, 35 | evls1varpw 22230 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))))) |
| 37 | 3 | eqcomi 2738 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = 𝑄 |
| 38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑅 evalSub1 𝐵) = 𝑄) |
| 39 | 23 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → (var1‘(𝑅 ↾s 𝐵)) = 𝑋) |
| 40 | 38, 39 | fveq12d 6833 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))) = (𝑄‘𝑋)) |
| 41 | 40 | oveq2d 7369 | . 2 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
| 42 | 25, 36, 41 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ℕ0cn0 12402 Basecbs 17138 ↾s cress 17159 ↑s cpws 17368 .gcmg 18964 mulGrpcmgp 20043 Ringcrg 20136 CRingccrg 20137 SubRingcsubrg 20472 var1cv1 22076 Poly1cpl1 22077 evalSub1 ces1 22216 eval1ce1 22217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-srg 20090 df-ring 20138 df-cring 20139 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-lmod 20783 df-lss 20853 df-lsp 20893 df-assa 21778 df-asp 21779 df-ascl 21780 df-psr 21834 df-mvr 21835 df-mpl 21836 df-opsr 21838 df-evls 21997 df-evl 21998 df-psr1 22080 df-vr1 22081 df-ply1 22082 df-evls1 22218 df-evl1 22219 |
| This theorem is referenced by: evl1scvarpw 22266 |
| Copyright terms: Public domain | W3C validator |