![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1varpw | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 20118, the proof is shorter using evls1varpw 20087 instead of proving it directly. (Contributed by AV, 15-Sep-2019.) |
Ref | Expression |
---|---|
evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
evl1varpw | ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1varpw.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | evl1fval1 20091 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐵)) |
5 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
6 | evl1varpw.g | . . . . . . . 8 ⊢ 𝐺 = (mulGrp‘𝑊) | |
7 | evl1varpw.w | . . . . . . . . 9 ⊢ 𝑊 = (Poly1‘𝑅) | |
8 | 7 | fveq2i 6449 | . . . . . . . 8 ⊢ (mulGrp‘𝑊) = (mulGrp‘(Poly1‘𝑅)) |
9 | 6, 8 | eqtri 2801 | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘(Poly1‘𝑅)) |
10 | 9 | fveq2i 6449 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘(mulGrp‘(Poly1‘𝑅))) |
11 | 5, 10 | eqtri 2801 | . . . . 5 ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝑅))) |
12 | evl1varpw.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 2 | ressid 16331 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑅 ↾s 𝐵) = 𝑅) |
15 | 14 | eqcomd 2783 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐵)) |
16 | 15 | fveq2d 6450 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐵))) |
17 | 16 | fveq2d 6450 | . . . . . 6 ⊢ (𝜑 → (mulGrp‘(Poly1‘𝑅)) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) |
18 | 17 | fveq2d 6450 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(Poly1‘𝑅))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
19 | 11, 18 | syl5eq 2825 | . . . 4 ⊢ (𝜑 → ↑ = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
20 | eqidd 2778 | . . . 4 ⊢ (𝜑 → 𝑁 = 𝑁) | |
21 | evl1varpw.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
22 | 15 | fveq2d 6450 | . . . . 5 ⊢ (𝜑 → (var1‘𝑅) = (var1‘(𝑅 ↾s 𝐵))) |
23 | 21, 22 | syl5eq 2825 | . . . 4 ⊢ (𝜑 → 𝑋 = (var1‘(𝑅 ↾s 𝐵))) |
24 | 19, 20, 23 | oveq123d 6943 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝑋) = (𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) |
25 | 4, 24 | fveq12d 6453 | . 2 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵))))) |
26 | eqid 2777 | . . 3 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
27 | eqid 2777 | . . 3 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
28 | eqid 2777 | . . 3 ⊢ (Poly1‘(𝑅 ↾s 𝐵)) = (Poly1‘(𝑅 ↾s 𝐵)) | |
29 | eqid 2777 | . . 3 ⊢ (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) | |
30 | eqid 2777 | . . 3 ⊢ (var1‘(𝑅 ↾s 𝐵)) = (var1‘(𝑅 ↾s 𝐵)) | |
31 | eqid 2777 | . . 3 ⊢ (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) | |
32 | crngring 18945 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
33 | 2 | subrgid 19174 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
34 | 12, 32, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
35 | evl1varpw.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
36 | 26, 27, 28, 29, 30, 2, 31, 12, 34, 35 | evls1varpw 20087 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))))) |
37 | 3 | eqcomi 2786 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = 𝑄 |
38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑅 evalSub1 𝐵) = 𝑄) |
39 | 23 | eqcomd 2783 | . . . 4 ⊢ (𝜑 → (var1‘(𝑅 ↾s 𝐵)) = 𝑋) |
40 | 38, 39 | fveq12d 6453 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))) = (𝑄‘𝑋)) |
41 | 40 | oveq2d 6938 | . 2 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
42 | 25, 36, 41 | 3eqtrd 2817 | 1 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ‘cfv 6135 (class class class)co 6922 ℕ0cn0 11642 Basecbs 16255 ↾s cress 16256 ↑s cpws 16493 .gcmg 17927 mulGrpcmgp 18876 Ringcrg 18934 CRingccrg 18935 SubRingcsubrg 19168 var1cv1 19942 Poly1cpl1 19943 evalSub1 ces1 20074 eval1ce1 20075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-ofr 7175 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-fzo 12785 df-seq 13120 df-hash 13436 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-hom 16362 df-cco 16363 df-0g 16488 df-gsum 16489 df-prds 16494 df-pws 16496 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mhm 17721 df-submnd 17722 df-grp 17812 df-minusg 17813 df-sbg 17814 df-mulg 17928 df-subg 17975 df-ghm 18042 df-cntz 18133 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-srg 18893 df-ring 18936 df-cring 18937 df-rnghom 19104 df-subrg 19170 df-lmod 19257 df-lss 19325 df-lsp 19367 df-assa 19709 df-asp 19710 df-ascl 19711 df-psr 19753 df-mvr 19754 df-mpl 19755 df-opsr 19757 df-evls 19902 df-evl 19903 df-psr1 19946 df-vr1 19947 df-ply1 19948 df-evls1 20076 df-evl1 20077 |
This theorem is referenced by: evl1scvarpw 20123 |
Copyright terms: Public domain | W3C validator |