Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1varpw | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 21524, the proof is shorter using evls1varpw 21493 instead of proving it directly. (Contributed by AV, 15-Sep-2019.) |
Ref | Expression |
---|---|
evl1varpw.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1varpw.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1varpw.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1varpw.x | ⊢ 𝑋 = (var1‘𝑅) |
evl1varpw.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1varpw.e | ⊢ ↑ = (.g‘𝐺) |
evl1varpw.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1varpw.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
evl1varpw | ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1varpw.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1varpw.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | evl1fval1 21497 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐵) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐵)) |
5 | evl1varpw.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
6 | evl1varpw.g | . . . . . . . 8 ⊢ 𝐺 = (mulGrp‘𝑊) | |
7 | evl1varpw.w | . . . . . . . . 9 ⊢ 𝑊 = (Poly1‘𝑅) | |
8 | 7 | fveq2i 6777 | . . . . . . . 8 ⊢ (mulGrp‘𝑊) = (mulGrp‘(Poly1‘𝑅)) |
9 | 6, 8 | eqtri 2766 | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘(Poly1‘𝑅)) |
10 | 9 | fveq2i 6777 | . . . . . 6 ⊢ (.g‘𝐺) = (.g‘(mulGrp‘(Poly1‘𝑅))) |
11 | 5, 10 | eqtri 2766 | . . . . 5 ⊢ ↑ = (.g‘(mulGrp‘(Poly1‘𝑅))) |
12 | evl1varpw.r | . . . . . . . . . 10 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 2 | ressid 16954 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑅 ↾s 𝐵) = 𝑅) |
15 | 14 | eqcomd 2744 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐵)) |
16 | 15 | fveq2d 6778 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐵))) |
17 | 16 | fveq2d 6778 | . . . . . 6 ⊢ (𝜑 → (mulGrp‘(Poly1‘𝑅)) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) |
18 | 17 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → (.g‘(mulGrp‘(Poly1‘𝑅))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
19 | 11, 18 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → ↑ = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))) |
20 | eqidd 2739 | . . . 4 ⊢ (𝜑 → 𝑁 = 𝑁) | |
21 | evl1varpw.x | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
22 | 15 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → (var1‘𝑅) = (var1‘(𝑅 ↾s 𝐵))) |
23 | 21, 22 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝑋 = (var1‘(𝑅 ↾s 𝐵))) |
24 | 19, 20, 23 | oveq123d 7296 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝑋) = (𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) |
25 | 4, 24 | fveq12d 6781 | . 2 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵))))) |
26 | eqid 2738 | . . 3 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
27 | eqid 2738 | . . 3 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
28 | eqid 2738 | . . 3 ⊢ (Poly1‘(𝑅 ↾s 𝐵)) = (Poly1‘(𝑅 ↾s 𝐵)) | |
29 | eqid 2738 | . . 3 ⊢ (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) = (mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))) | |
30 | eqid 2738 | . . 3 ⊢ (var1‘(𝑅 ↾s 𝐵)) = (var1‘(𝑅 ↾s 𝐵)) | |
31 | eqid 2738 | . . 3 ⊢ (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) = (.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵)))) | |
32 | crngring 19795 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
33 | 2 | subrgid 20026 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
34 | 12, 32, 33 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑅)) |
35 | evl1varpw.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
36 | 26, 27, 28, 29, 30, 2, 31, 12, 34, 35 | evls1varpw 21493 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅 ↾s 𝐵))))(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))))) |
37 | 3 | eqcomi 2747 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = 𝑄 |
38 | 37 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑅 evalSub1 𝐵) = 𝑄) |
39 | 23 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → (var1‘(𝑅 ↾s 𝐵)) = 𝑋) |
40 | 38, 39 | fveq12d 6781 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵))) = (𝑄‘𝑋)) |
41 | 40 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅 ↾s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
42 | 25, 36, 41 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑄‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℕ0cn0 12233 Basecbs 16912 ↾s cress 16941 ↑s cpws 17157 .gcmg 18700 mulGrpcmgp 19720 Ringcrg 19783 CRingccrg 19784 SubRingcsubrg 20020 var1cv1 21347 Poly1cpl1 21348 evalSub1 ces1 21479 eval1ce1 21480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-srg 19742 df-ring 19785 df-cring 19786 df-rnghom 19959 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-assa 21060 df-asp 21061 df-ascl 21062 df-psr 21112 df-mvr 21113 df-mpl 21114 df-opsr 21116 df-evls 21282 df-evl 21283 df-psr1 21351 df-vr1 21352 df-ply1 21353 df-evls1 21481 df-evl1 21482 |
This theorem is referenced by: evl1scvarpw 21529 |
Copyright terms: Public domain | W3C validator |