MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1varpw Structured version   Visualization version   GIF version

Theorem evl1varpw 22255
Description: Univariate polynomial evaluation maps the exponentiation of a variable to the exponentiation of the evaluated variable. Remark: in contrast to evl1gsumadd 22252, the proof is shorter using evls1varpw 22221 instead of proving it directly. (Contributed by AV, 15-Sep-2019.)
Hypotheses
Ref Expression
evl1varpw.q 𝑄 = (eval1𝑅)
evl1varpw.w 𝑊 = (Poly1𝑅)
evl1varpw.g 𝐺 = (mulGrp‘𝑊)
evl1varpw.x 𝑋 = (var1𝑅)
evl1varpw.b 𝐵 = (Base‘𝑅)
evl1varpw.e = (.g𝐺)
evl1varpw.r (𝜑𝑅 ∈ CRing)
evl1varpw.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
evl1varpw (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)))

Proof of Theorem evl1varpw
StepHypRef Expression
1 evl1varpw.q . . . . 5 𝑄 = (eval1𝑅)
2 evl1varpw.b . . . . 5 𝐵 = (Base‘𝑅)
31, 2evl1fval1 22225 . . . 4 𝑄 = (𝑅 evalSub1 𝐵)
43a1i 11 . . 3 (𝜑𝑄 = (𝑅 evalSub1 𝐵))
5 evl1varpw.e . . . . . 6 = (.g𝐺)
6 evl1varpw.g . . . . . . . 8 𝐺 = (mulGrp‘𝑊)
7 evl1varpw.w . . . . . . . . 9 𝑊 = (Poly1𝑅)
87fveq2i 6864 . . . . . . . 8 (mulGrp‘𝑊) = (mulGrp‘(Poly1𝑅))
96, 8eqtri 2753 . . . . . . 7 𝐺 = (mulGrp‘(Poly1𝑅))
109fveq2i 6864 . . . . . 6 (.g𝐺) = (.g‘(mulGrp‘(Poly1𝑅)))
115, 10eqtri 2753 . . . . 5 = (.g‘(mulGrp‘(Poly1𝑅)))
12 evl1varpw.r . . . . . . . . . 10 (𝜑𝑅 ∈ CRing)
132ressid 17221 . . . . . . . . . 10 (𝑅 ∈ CRing → (𝑅s 𝐵) = 𝑅)
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝑅s 𝐵) = 𝑅)
1514eqcomd 2736 . . . . . . . 8 (𝜑𝑅 = (𝑅s 𝐵))
1615fveq2d 6865 . . . . . . 7 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s 𝐵)))
1716fveq2d 6865 . . . . . 6 (𝜑 → (mulGrp‘(Poly1𝑅)) = (mulGrp‘(Poly1‘(𝑅s 𝐵))))
1817fveq2d 6865 . . . . 5 (𝜑 → (.g‘(mulGrp‘(Poly1𝑅))) = (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵)))))
1911, 18eqtrid 2777 . . . 4 (𝜑 = (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵)))))
20 eqidd 2731 . . . 4 (𝜑𝑁 = 𝑁)
21 evl1varpw.x . . . . 5 𝑋 = (var1𝑅)
2215fveq2d 6865 . . . . 5 (𝜑 → (var1𝑅) = (var1‘(𝑅s 𝐵)))
2321, 22eqtrid 2777 . . . 4 (𝜑𝑋 = (var1‘(𝑅s 𝐵)))
2419, 20, 23oveq123d 7411 . . 3 (𝜑 → (𝑁 𝑋) = (𝑁(.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))(var1‘(𝑅s 𝐵))))
254, 24fveq12d 6868 . 2 (𝜑 → (𝑄‘(𝑁 𝑋)) = ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))(var1‘(𝑅s 𝐵)))))
26 eqid 2730 . . 3 (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵)
27 eqid 2730 . . 3 (𝑅s 𝐵) = (𝑅s 𝐵)
28 eqid 2730 . . 3 (Poly1‘(𝑅s 𝐵)) = (Poly1‘(𝑅s 𝐵))
29 eqid 2730 . . 3 (mulGrp‘(Poly1‘(𝑅s 𝐵))) = (mulGrp‘(Poly1‘(𝑅s 𝐵)))
30 eqid 2730 . . 3 (var1‘(𝑅s 𝐵)) = (var1‘(𝑅s 𝐵))
31 eqid 2730 . . 3 (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵)))) = (.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))
32 crngring 20161 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
332subrgid 20489 . . . 4 (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅))
3412, 32, 333syl 18 . . 3 (𝜑𝐵 ∈ (SubRing‘𝑅))
35 evl1varpw.n . . 3 (𝜑𝑁 ∈ ℕ0)
3626, 27, 28, 29, 30, 2, 31, 12, 34, 35evls1varpw 22221 . 2 (𝜑 → ((𝑅 evalSub1 𝐵)‘(𝑁(.g‘(mulGrp‘(Poly1‘(𝑅s 𝐵))))(var1‘(𝑅s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅s 𝐵)))))
373eqcomi 2739 . . . . 5 (𝑅 evalSub1 𝐵) = 𝑄
3837a1i 11 . . . 4 (𝜑 → (𝑅 evalSub1 𝐵) = 𝑄)
3923eqcomd 2736 . . . 4 (𝜑 → (var1‘(𝑅s 𝐵)) = 𝑋)
4038, 39fveq12d 6868 . . 3 (𝜑 → ((𝑅 evalSub1 𝐵)‘(var1‘(𝑅s 𝐵))) = (𝑄𝑋))
4140oveq2d 7406 . 2 (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))((𝑅 evalSub1 𝐵)‘(var1‘(𝑅s 𝐵)))) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)))
4225, 36, 413eqtrd 2769 1 (𝜑 → (𝑄‘(𝑁 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑅s 𝐵)))(𝑄𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  0cn0 12449  Basecbs 17186  s cress 17207  s cpws 17416  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  SubRingcsubrg 20485  var1cv1 22067  Poly1cpl1 22068   evalSub1 ces1 22207  eval1ce1 22208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-evls1 22209  df-evl1 22210
This theorem is referenced by:  evl1scvarpw  22257
  Copyright terms: Public domain W3C validator