MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1maprhm Structured version   Visualization version   GIF version

Theorem evl1maprhm 22289
Description: The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.)
Hypotheses
Ref Expression
evl1maprhm.q 𝑂 = (eval1𝑅)
evl1maprhm.p 𝑃 = (Poly1𝑅)
evl1maprhm.b 𝐵 = (Base‘𝑅)
evl1maprhm.u 𝑈 = (Base‘𝑃)
evl1maprhm.r (𝜑𝑅 ∈ CRing)
evl1maprhm.y (𝜑𝑋𝐵)
evl1maprhm.f 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
Assertion
Ref Expression
evl1maprhm (𝜑𝐹 ∈ (𝑃 RingHom 𝑅))
Distinct variable groups:   𝑅,𝑝   𝑋,𝑝   𝜑,𝑝
Allowed substitution hints:   𝐵(𝑝)   𝑃(𝑝)   𝑈(𝑝)   𝐹(𝑝)   𝑂(𝑝)

Proof of Theorem evl1maprhm
StepHypRef Expression
1 evl1maprhm.f . . 3 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
21a1i 11 . 2 (𝜑𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)))
3 evl1maprhm.u . . . . . 6 𝑈 = (Base‘𝑃)
4 evl1maprhm.p . . . . . . . 8 𝑃 = (Poly1𝑅)
5 ssidd 3953 . . . . . . . . . . 11 (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅))
6 evl1maprhm.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
76elexd 3460 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
86crngringd 20159 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
9 eqid 2731 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
109subrgid 20483 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
118, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅))
1211elexd 3460 . . . . . . . . . . 11 (𝜑 → (Base‘𝑅) ∈ V)
13 eqid 2731 . . . . . . . . . . . 12 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
1413, 9ressid2 17140 . . . . . . . . . . 11 (((Base‘𝑅) ⊆ (Base‘𝑅) ∧ 𝑅 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑅s (Base‘𝑅)) = 𝑅)
155, 7, 12, 14syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑅s (Base‘𝑅)) = 𝑅)
16 eqcom 2738 . . . . . . . . . . 11 ((𝑅s (Base‘𝑅)) = 𝑅𝑅 = (𝑅s (Base‘𝑅)))
1716imbi2i 336 . . . . . . . . . 10 ((𝜑 → (𝑅s (Base‘𝑅)) = 𝑅) ↔ (𝜑𝑅 = (𝑅s (Base‘𝑅))))
1815, 17mpbi 230 . . . . . . . . 9 (𝜑𝑅 = (𝑅s (Base‘𝑅)))
1918fveq2d 6821 . . . . . . . 8 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s (Base‘𝑅))))
204, 19eqtrid 2778 . . . . . . 7 (𝜑𝑃 = (Poly1‘(𝑅s (Base‘𝑅))))
2120fveq2d 6821 . . . . . 6 (𝜑 → (Base‘𝑃) = (Base‘(Poly1‘(𝑅s (Base‘𝑅)))))
223, 21eqtrid 2778 . . . . 5 (𝜑𝑈 = (Base‘(Poly1‘(𝑅s (Base‘𝑅)))))
23 evl1maprhm.q . . . . . . . . 9 𝑂 = (eval1𝑅)
2423, 9evl1fval1 22241 . . . . . . . 8 𝑂 = (𝑅 evalSub1 (Base‘𝑅))
2524a1i 11 . . . . . . 7 (𝜑𝑂 = (𝑅 evalSub1 (Base‘𝑅)))
2625fveq1d 6819 . . . . . 6 (𝜑 → (𝑂𝑝) = ((𝑅 evalSub1 (Base‘𝑅))‘𝑝))
2726fveq1d 6819 . . . . 5 (𝜑 → ((𝑂𝑝)‘𝑋) = (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))
2822, 27mpteq12dv 5173 . . . 4 (𝜑 → (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)))
29 eqid 2731 . . . . 5 (𝑅 evalSub1 (Base‘𝑅)) = (𝑅 evalSub1 (Base‘𝑅))
30 eqid 2731 . . . . 5 (Poly1‘(𝑅s (Base‘𝑅))) = (Poly1‘(𝑅s (Base‘𝑅)))
31 eqid 2731 . . . . 5 (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) = (Base‘(Poly1‘(𝑅s (Base‘𝑅))))
32 evl1maprhm.y . . . . . 6 (𝜑𝑋𝐵)
33 evl1maprhm.b . . . . . 6 𝐵 = (Base‘𝑅)
3432, 33eleqtrdi 2841 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑅))
35 eqid 2731 . . . . 5 (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))
3629, 30, 9, 31, 6, 11, 34, 35evls1maprhm 22286 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅s (Base‘𝑅))) RingHom 𝑅))
3728, 36eqeltrd 2831 . . 3 (𝜑 → (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅s (Base‘𝑅))) RingHom 𝑅))
384a1i 11 . . . . 5 (𝜑𝑃 = (Poly1𝑅))
3915eqcomd 2737 . . . . . 6 (𝜑𝑅 = (𝑅s (Base‘𝑅)))
4039fveq2d 6821 . . . . 5 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s (Base‘𝑅))))
4138, 40eqtr2d 2767 . . . 4 (𝜑 → (Poly1‘(𝑅s (Base‘𝑅))) = 𝑃)
4241oveq1d 7356 . . 3 (𝜑 → ((Poly1‘(𝑅s (Base‘𝑅))) RingHom 𝑅) = (𝑃 RingHom 𝑅))
4337, 42eleqtrd 2833 . 2 (𝜑 → (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)) ∈ (𝑃 RingHom 𝑅))
442, 43eqeltrd 2831 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cmpt 5167  cfv 6476  (class class class)co 7341  Basecbs 17115  s cress 17136  Ringcrg 20146  CRingccrg 20147   RingHom crh 20382  SubRingcsubrg 20479  Poly1cpl1 22084   evalSub1 ces1 22223  eval1ce1 22224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-lmod 20790  df-lss 20860  df-lsp 20900  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evls1 22225  df-evl1 22226
This theorem is referenced by:  aks5lem1  42219  aks5lem2  42220
  Copyright terms: Public domain W3C validator