MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1maprhm Structured version   Visualization version   GIF version

Theorem evl1maprhm 22383
Description: The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.)
Hypotheses
Ref Expression
evl1maprhm.q 𝑂 = (eval1𝑅)
evl1maprhm.p 𝑃 = (Poly1𝑅)
evl1maprhm.b 𝐵 = (Base‘𝑅)
evl1maprhm.u 𝑈 = (Base‘𝑃)
evl1maprhm.r (𝜑𝑅 ∈ CRing)
evl1maprhm.y (𝜑𝑋𝐵)
evl1maprhm.f 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
Assertion
Ref Expression
evl1maprhm (𝜑𝐹 ∈ (𝑃 RingHom 𝑅))
Distinct variable groups:   𝑅,𝑝   𝑋,𝑝   𝜑,𝑝
Allowed substitution hints:   𝐵(𝑝)   𝑃(𝑝)   𝑈(𝑝)   𝐹(𝑝)   𝑂(𝑝)

Proof of Theorem evl1maprhm
StepHypRef Expression
1 evl1maprhm.f . . 3 𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋))
21a1i 11 . 2 (𝜑𝐹 = (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)))
3 evl1maprhm.u . . . . . 6 𝑈 = (Base‘𝑃)
4 evl1maprhm.p . . . . . . . 8 𝑃 = (Poly1𝑅)
5 ssidd 4007 . . . . . . . . . . 11 (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅))
6 evl1maprhm.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ CRing)
76elexd 3504 . . . . . . . . . . 11 (𝜑𝑅 ∈ V)
86crngringd 20243 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ Ring)
9 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
109subrgid 20573 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅))
118, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅))
1211elexd 3504 . . . . . . . . . . 11 (𝜑 → (Base‘𝑅) ∈ V)
13 eqid 2737 . . . . . . . . . . . 12 (𝑅s (Base‘𝑅)) = (𝑅s (Base‘𝑅))
1413, 9ressid2 17278 . . . . . . . . . . 11 (((Base‘𝑅) ⊆ (Base‘𝑅) ∧ 𝑅 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑅s (Base‘𝑅)) = 𝑅)
155, 7, 12, 14syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑅s (Base‘𝑅)) = 𝑅)
16 eqcom 2744 . . . . . . . . . . 11 ((𝑅s (Base‘𝑅)) = 𝑅𝑅 = (𝑅s (Base‘𝑅)))
1716imbi2i 336 . . . . . . . . . 10 ((𝜑 → (𝑅s (Base‘𝑅)) = 𝑅) ↔ (𝜑𝑅 = (𝑅s (Base‘𝑅))))
1815, 17mpbi 230 . . . . . . . . 9 (𝜑𝑅 = (𝑅s (Base‘𝑅)))
1918fveq2d 6910 . . . . . . . 8 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s (Base‘𝑅))))
204, 19eqtrid 2789 . . . . . . 7 (𝜑𝑃 = (Poly1‘(𝑅s (Base‘𝑅))))
2120fveq2d 6910 . . . . . 6 (𝜑 → (Base‘𝑃) = (Base‘(Poly1‘(𝑅s (Base‘𝑅)))))
223, 21eqtrid 2789 . . . . 5 (𝜑𝑈 = (Base‘(Poly1‘(𝑅s (Base‘𝑅)))))
23 evl1maprhm.q . . . . . . . . 9 𝑂 = (eval1𝑅)
2423, 9evl1fval1 22335 . . . . . . . 8 𝑂 = (𝑅 evalSub1 (Base‘𝑅))
2524a1i 11 . . . . . . 7 (𝜑𝑂 = (𝑅 evalSub1 (Base‘𝑅)))
2625fveq1d 6908 . . . . . 6 (𝜑 → (𝑂𝑝) = ((𝑅 evalSub1 (Base‘𝑅))‘𝑝))
2726fveq1d 6908 . . . . 5 (𝜑 → ((𝑂𝑝)‘𝑋) = (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))
2822, 27mpteq12dv 5233 . . . 4 (𝜑 → (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)))
29 eqid 2737 . . . . 5 (𝑅 evalSub1 (Base‘𝑅)) = (𝑅 evalSub1 (Base‘𝑅))
30 eqid 2737 . . . . 5 (Poly1‘(𝑅s (Base‘𝑅))) = (Poly1‘(𝑅s (Base‘𝑅)))
31 eqid 2737 . . . . 5 (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) = (Base‘(Poly1‘(𝑅s (Base‘𝑅))))
32 evl1maprhm.y . . . . . 6 (𝜑𝑋𝐵)
33 evl1maprhm.b . . . . . 6 𝐵 = (Base‘𝑅)
3432, 33eleqtrdi 2851 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑅))
35 eqid 2737 . . . . 5 (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))
3629, 30, 9, 31, 6, 11, 34, 35evls1maprhm 22380 . . . 4 (𝜑 → (𝑝 ∈ (Base‘(Poly1‘(𝑅s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅s (Base‘𝑅))) RingHom 𝑅))
3728, 36eqeltrd 2841 . . 3 (𝜑 → (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅s (Base‘𝑅))) RingHom 𝑅))
384a1i 11 . . . . 5 (𝜑𝑃 = (Poly1𝑅))
3915eqcomd 2743 . . . . . 6 (𝜑𝑅 = (𝑅s (Base‘𝑅)))
4039fveq2d 6910 . . . . 5 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s (Base‘𝑅))))
4138, 40eqtr2d 2778 . . . 4 (𝜑 → (Poly1‘(𝑅s (Base‘𝑅))) = 𝑃)
4241oveq1d 7446 . . 3 (𝜑 → ((Poly1‘(𝑅s (Base‘𝑅))) RingHom 𝑅) = (𝑃 RingHom 𝑅))
4337, 42eleqtrd 2843 . 2 (𝜑 → (𝑝𝑈 ↦ ((𝑂𝑝)‘𝑋)) ∈ (𝑃 RingHom 𝑅))
442, 43eqeltrd 2841 1 (𝜑𝐹 ∈ (𝑃 RingHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  cmpt 5225  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  SubRingcsubrg 20569  Poly1cpl1 22178   evalSub1 ces1 22317  eval1ce1 22318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320
This theorem is referenced by:  aks5lem1  42187  aks5lem2  42188
  Copyright terms: Public domain W3C validator