![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1maprhm | Structured version Visualization version GIF version |
Description: The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.) |
Ref | Expression |
---|---|
evl1maprhm.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1maprhm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1maprhm.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1maprhm.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1maprhm.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1maprhm.y | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
evl1maprhm.f | ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
Ref | Expression |
---|---|
evl1maprhm | ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1maprhm.f | . . 3 ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋))) |
3 | evl1maprhm.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
4 | evl1maprhm.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | ssidd 4000 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
6 | evl1maprhm.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
7 | 6 | elexd 3483 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 ∈ V) |
8 | 6 | crngringd 20198 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | eqid 2725 | . . . . . . . . . . . . . 14 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | 9 | subrgid 20524 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
11 | 8, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
12 | 11 | elexd 3483 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
13 | eqid 2725 | . . . . . . . . . . . 12 ⊢ (𝑅 ↾s (Base‘𝑅)) = (𝑅 ↾s (Base‘𝑅)) | |
14 | 13, 9 | ressid2 17216 | . . . . . . . . . . 11 ⊢ (((Base‘𝑅) ⊆ (Base‘𝑅) ∧ 𝑅 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
15 | 5, 7, 12, 14 | syl3anc 1368 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
16 | eqcom 2732 | . . . . . . . . . . 11 ⊢ ((𝑅 ↾s (Base‘𝑅)) = 𝑅 ↔ 𝑅 = (𝑅 ↾s (Base‘𝑅))) | |
17 | 16 | imbi2i 335 | . . . . . . . . . 10 ⊢ ((𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) ↔ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅)))) |
18 | 15, 17 | mpbi 229 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
19 | 18 | fveq2d 6900 | . . . . . . . 8 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
20 | 4, 19 | eqtrid 2777 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
21 | 20 | fveq2d 6900 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑃) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
22 | 3, 21 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
23 | evl1maprhm.q | . . . . . . . . 9 ⊢ 𝑂 = (eval1‘𝑅) | |
24 | 23, 9 | evl1fval1 22275 | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 (Base‘𝑅)) |
25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑂 = (𝑅 evalSub1 (Base‘𝑅))) |
26 | 25 | fveq1d 6898 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑝) = ((𝑅 evalSub1 (Base‘𝑅))‘𝑝)) |
27 | 26 | fveq1d 6898 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑝)‘𝑋) = (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) |
28 | 22, 27 | mpteq12dv 5240 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))) |
29 | eqid 2725 | . . . . 5 ⊢ (𝑅 evalSub1 (Base‘𝑅)) = (𝑅 evalSub1 (Base‘𝑅)) | |
30 | eqid 2725 | . . . . 5 ⊢ (Poly1‘(𝑅 ↾s (Base‘𝑅))) = (Poly1‘(𝑅 ↾s (Base‘𝑅))) | |
31 | eqid 2725 | . . . . 5 ⊢ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) | |
32 | evl1maprhm.y | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
33 | evl1maprhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
34 | 32, 33 | eleqtrdi 2835 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
35 | eqid 2725 | . . . . 5 ⊢ (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) | |
36 | 29, 30, 9, 31, 6, 11, 34, 35 | evls1maprhm 22320 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
37 | 28, 36 | eqeltrd 2825 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
38 | 4 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑃 = (Poly1‘𝑅)) |
39 | 15 | eqcomd 2731 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
40 | 39 | fveq2d 6900 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
41 | 38, 40 | eqtr2d 2766 | . . . 4 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s (Base‘𝑅))) = 𝑃) |
42 | 41 | oveq1d 7434 | . . 3 ⊢ (𝜑 → ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅) = (𝑃 RingHom 𝑅)) |
43 | 37, 42 | eleqtrd 2827 | . 2 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ (𝑃 RingHom 𝑅)) |
44 | 2, 43 | eqeltrd 2825 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ⊆ wss 3944 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 Ringcrg 20185 CRingccrg 20186 RingHom crh 20420 SubRingcsubrg 20518 Poly1cpl1 22119 evalSub1 ces1 22257 eval1ce1 22258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-srg 20139 df-ring 20187 df-cring 20188 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-lmod 20757 df-lss 20828 df-lsp 20868 df-assa 21804 df-asp 21805 df-ascl 21806 df-psr 21859 df-mvr 21860 df-mpl 21861 df-opsr 21863 df-evls 22040 df-evl 22041 df-psr1 22122 df-vr1 22123 df-ply1 22124 df-coe1 22125 df-evls1 22259 df-evl1 22260 |
This theorem is referenced by: aks5lem1 41789 aks5lem2 41790 |
Copyright terms: Public domain | W3C validator |