| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1maprhm | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.) |
| Ref | Expression |
|---|---|
| evl1maprhm.q | ⊢ 𝑂 = (eval1‘𝑅) |
| evl1maprhm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| evl1maprhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1maprhm.u | ⊢ 𝑈 = (Base‘𝑃) |
| evl1maprhm.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1maprhm.y | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evl1maprhm.f | ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
| Ref | Expression |
|---|---|
| evl1maprhm | ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1maprhm.f | . . 3 ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋))) |
| 3 | evl1maprhm.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | evl1maprhm.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | ssidd 3982 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
| 6 | evl1maprhm.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | 6 | elexd 3483 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 ∈ V) |
| 8 | 6 | crngringd 20206 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | eqid 2735 | . . . . . . . . . . . . . 14 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | 9 | subrgid 20533 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 11 | 8, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 12 | 11 | elexd 3483 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 13 | eqid 2735 | . . . . . . . . . . . 12 ⊢ (𝑅 ↾s (Base‘𝑅)) = (𝑅 ↾s (Base‘𝑅)) | |
| 14 | 13, 9 | ressid2 17255 | . . . . . . . . . . 11 ⊢ (((Base‘𝑅) ⊆ (Base‘𝑅) ∧ 𝑅 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 15 | 5, 7, 12, 14 | syl3anc 1373 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 16 | eqcom 2742 | . . . . . . . . . . 11 ⊢ ((𝑅 ↾s (Base‘𝑅)) = 𝑅 ↔ 𝑅 = (𝑅 ↾s (Base‘𝑅))) | |
| 17 | 16 | imbi2i 336 | . . . . . . . . . 10 ⊢ ((𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) ↔ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅)))) |
| 18 | 15, 17 | mpbi 230 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
| 19 | 18 | fveq2d 6880 | . . . . . . . 8 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 20 | 4, 19 | eqtrid 2782 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 21 | 20 | fveq2d 6880 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑃) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
| 22 | 3, 21 | eqtrid 2782 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
| 23 | evl1maprhm.q | . . . . . . . . 9 ⊢ 𝑂 = (eval1‘𝑅) | |
| 24 | 23, 9 | evl1fval1 22269 | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 (Base‘𝑅)) |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑂 = (𝑅 evalSub1 (Base‘𝑅))) |
| 26 | 25 | fveq1d 6878 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑝) = ((𝑅 evalSub1 (Base‘𝑅))‘𝑝)) |
| 27 | 26 | fveq1d 6878 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑝)‘𝑋) = (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) |
| 28 | 22, 27 | mpteq12dv 5207 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))) |
| 29 | eqid 2735 | . . . . 5 ⊢ (𝑅 evalSub1 (Base‘𝑅)) = (𝑅 evalSub1 (Base‘𝑅)) | |
| 30 | eqid 2735 | . . . . 5 ⊢ (Poly1‘(𝑅 ↾s (Base‘𝑅))) = (Poly1‘(𝑅 ↾s (Base‘𝑅))) | |
| 31 | eqid 2735 | . . . . 5 ⊢ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) | |
| 32 | evl1maprhm.y | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 33 | evl1maprhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 34 | 32, 33 | eleqtrdi 2844 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 35 | eqid 2735 | . . . . 5 ⊢ (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) | |
| 36 | 29, 30, 9, 31, 6, 11, 34, 35 | evls1maprhm 22314 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
| 37 | 28, 36 | eqeltrd 2834 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
| 38 | 4 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑃 = (Poly1‘𝑅)) |
| 39 | 15 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
| 40 | 39 | fveq2d 6880 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 41 | 38, 40 | eqtr2d 2771 | . . . 4 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s (Base‘𝑅))) = 𝑃) |
| 42 | 41 | oveq1d 7420 | . . 3 ⊢ (𝜑 → ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅) = (𝑃 RingHom 𝑅)) |
| 43 | 37, 42 | eleqtrd 2836 | . 2 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ (𝑃 RingHom 𝑅)) |
| 44 | 2, 43 | eqeltrd 2834 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 Ringcrg 20193 CRingccrg 20194 RingHom crh 20429 SubRingcsubrg 20529 Poly1cpl1 22112 evalSub1 ces1 22251 eval1ce1 22252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-ghm 19196 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-srg 20147 df-ring 20195 df-cring 20196 df-rhm 20432 df-subrng 20506 df-subrg 20530 df-lmod 20819 df-lss 20889 df-lsp 20929 df-assa 21813 df-asp 21814 df-ascl 21815 df-psr 21869 df-mvr 21870 df-mpl 21871 df-opsr 21873 df-evls 22032 df-evl 22033 df-psr1 22115 df-vr1 22116 df-ply1 22117 df-coe1 22118 df-evls1 22253 df-evl1 22254 |
| This theorem is referenced by: aks5lem1 42199 aks5lem2 42200 |
| Copyright terms: Public domain | W3C validator |