| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1maprhm | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.) |
| Ref | Expression |
|---|---|
| evl1maprhm.q | ⊢ 𝑂 = (eval1‘𝑅) |
| evl1maprhm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| evl1maprhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1maprhm.u | ⊢ 𝑈 = (Base‘𝑃) |
| evl1maprhm.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1maprhm.y | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evl1maprhm.f | ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
| Ref | Expression |
|---|---|
| evl1maprhm | ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1maprhm.f | . . 3 ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋))) |
| 3 | evl1maprhm.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | evl1maprhm.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | ssidd 3967 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
| 6 | evl1maprhm.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | 6 | elexd 3468 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 ∈ V) |
| 8 | 6 | crngringd 20131 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | eqid 2729 | . . . . . . . . . . . . . 14 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | 9 | subrgid 20458 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 11 | 8, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 12 | 11 | elexd 3468 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 13 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (𝑅 ↾s (Base‘𝑅)) = (𝑅 ↾s (Base‘𝑅)) | |
| 14 | 13, 9 | ressid2 17180 | . . . . . . . . . . 11 ⊢ (((Base‘𝑅) ⊆ (Base‘𝑅) ∧ 𝑅 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 15 | 5, 7, 12, 14 | syl3anc 1373 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 16 | eqcom 2736 | . . . . . . . . . . 11 ⊢ ((𝑅 ↾s (Base‘𝑅)) = 𝑅 ↔ 𝑅 = (𝑅 ↾s (Base‘𝑅))) | |
| 17 | 16 | imbi2i 336 | . . . . . . . . . 10 ⊢ ((𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) ↔ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅)))) |
| 18 | 15, 17 | mpbi 230 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
| 19 | 18 | fveq2d 6844 | . . . . . . . 8 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 20 | 4, 19 | eqtrid 2776 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 21 | 20 | fveq2d 6844 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑃) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
| 22 | 3, 21 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
| 23 | evl1maprhm.q | . . . . . . . . 9 ⊢ 𝑂 = (eval1‘𝑅) | |
| 24 | 23, 9 | evl1fval1 22194 | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 (Base‘𝑅)) |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑂 = (𝑅 evalSub1 (Base‘𝑅))) |
| 26 | 25 | fveq1d 6842 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑝) = ((𝑅 evalSub1 (Base‘𝑅))‘𝑝)) |
| 27 | 26 | fveq1d 6842 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑝)‘𝑋) = (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) |
| 28 | 22, 27 | mpteq12dv 5189 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))) |
| 29 | eqid 2729 | . . . . 5 ⊢ (𝑅 evalSub1 (Base‘𝑅)) = (𝑅 evalSub1 (Base‘𝑅)) | |
| 30 | eqid 2729 | . . . . 5 ⊢ (Poly1‘(𝑅 ↾s (Base‘𝑅))) = (Poly1‘(𝑅 ↾s (Base‘𝑅))) | |
| 31 | eqid 2729 | . . . . 5 ⊢ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) | |
| 32 | evl1maprhm.y | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 33 | evl1maprhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 34 | 32, 33 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 35 | eqid 2729 | . . . . 5 ⊢ (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) | |
| 36 | 29, 30, 9, 31, 6, 11, 34, 35 | evls1maprhm 22239 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
| 37 | 28, 36 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
| 38 | 4 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑃 = (Poly1‘𝑅)) |
| 39 | 15 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
| 40 | 39 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 41 | 38, 40 | eqtr2d 2765 | . . . 4 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s (Base‘𝑅))) = 𝑃) |
| 42 | 41 | oveq1d 7384 | . . 3 ⊢ (𝜑 → ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅) = (𝑃 RingHom 𝑅)) |
| 43 | 37, 42 | eleqtrd 2830 | . 2 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ (𝑃 RingHom 𝑅)) |
| 44 | 2, 43 | eqeltrd 2828 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 Ringcrg 20118 CRingccrg 20119 RingHom crh 20354 SubRingcsubrg 20454 Poly1cpl1 22037 evalSub1 ces1 22176 eval1ce1 22177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-vr1 22041 df-ply1 22042 df-coe1 22043 df-evls1 22178 df-evl1 22179 |
| This theorem is referenced by: aks5lem1 42147 aks5lem2 42148 |
| Copyright terms: Public domain | W3C validator |