| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1maprhm | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 mapping polynomials 𝑝 to their evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by metakunt, 19-May-2025.) |
| Ref | Expression |
|---|---|
| evl1maprhm.q | ⊢ 𝑂 = (eval1‘𝑅) |
| evl1maprhm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| evl1maprhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1maprhm.u | ⊢ 𝑈 = (Base‘𝑃) |
| evl1maprhm.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1maprhm.y | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| evl1maprhm.f | ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) |
| Ref | Expression |
|---|---|
| evl1maprhm | ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1maprhm.f | . . 3 ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋))) |
| 3 | evl1maprhm.u | . . . . . 6 ⊢ 𝑈 = (Base‘𝑃) | |
| 4 | evl1maprhm.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | ssidd 3959 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ⊆ (Base‘𝑅)) | |
| 6 | evl1maprhm.r | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | 6 | elexd 3460 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑅 ∈ V) |
| 8 | 6 | crngringd 20131 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | eqid 2729 | . . . . . . . . . . . . . 14 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | 9 | subrgid 20458 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 11 | 8, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 12 | 11 | elexd 3460 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 13 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (𝑅 ↾s (Base‘𝑅)) = (𝑅 ↾s (Base‘𝑅)) | |
| 14 | 13, 9 | ressid2 17145 | . . . . . . . . . . 11 ⊢ (((Base‘𝑅) ⊆ (Base‘𝑅) ∧ 𝑅 ∈ V ∧ (Base‘𝑅) ∈ V) → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 15 | 5, 7, 12, 14 | syl3anc 1373 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 16 | eqcom 2736 | . . . . . . . . . . 11 ⊢ ((𝑅 ↾s (Base‘𝑅)) = 𝑅 ↔ 𝑅 = (𝑅 ↾s (Base‘𝑅))) | |
| 17 | 16 | imbi2i 336 | . . . . . . . . . 10 ⊢ ((𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) ↔ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅)))) |
| 18 | 15, 17 | mpbi 230 | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
| 19 | 18 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 20 | 4, 19 | eqtrid 2776 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 21 | 20 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑃) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
| 22 | 3, 21 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅))))) |
| 23 | evl1maprhm.q | . . . . . . . . 9 ⊢ 𝑂 = (eval1‘𝑅) | |
| 24 | 23, 9 | evl1fval1 22216 | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 (Base‘𝑅)) |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑂 = (𝑅 evalSub1 (Base‘𝑅))) |
| 26 | 25 | fveq1d 6824 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑝) = ((𝑅 evalSub1 (Base‘𝑅))‘𝑝)) |
| 27 | 26 | fveq1d 6824 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑝)‘𝑋) = (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) |
| 28 | 22, 27 | mpteq12dv 5179 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋))) |
| 29 | eqid 2729 | . . . . 5 ⊢ (𝑅 evalSub1 (Base‘𝑅)) = (𝑅 evalSub1 (Base‘𝑅)) | |
| 30 | eqid 2729 | . . . . 5 ⊢ (Poly1‘(𝑅 ↾s (Base‘𝑅))) = (Poly1‘(𝑅 ↾s (Base‘𝑅))) | |
| 31 | eqid 2729 | . . . . 5 ⊢ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) = (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) | |
| 32 | evl1maprhm.y | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 33 | evl1maprhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 34 | 32, 33 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 35 | eqid 2729 | . . . . 5 ⊢ (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) = (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) | |
| 36 | 29, 30, 9, 31, 6, 11, 34, 35 | evls1maprhm 22261 | . . . 4 ⊢ (𝜑 → (𝑝 ∈ (Base‘(Poly1‘(𝑅 ↾s (Base‘𝑅)))) ↦ (((𝑅 evalSub1 (Base‘𝑅))‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
| 37 | 28, 36 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅)) |
| 38 | 4 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑃 = (Poly1‘𝑅)) |
| 39 | 15 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s (Base‘𝑅))) |
| 40 | 39 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s (Base‘𝑅)))) |
| 41 | 38, 40 | eqtr2d 2765 | . . . 4 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s (Base‘𝑅))) = 𝑃) |
| 42 | 41 | oveq1d 7364 | . . 3 ⊢ (𝜑 → ((Poly1‘(𝑅 ↾s (Base‘𝑅))) RingHom 𝑅) = (𝑃 RingHom 𝑅)) |
| 43 | 37, 42 | eleqtrd 2830 | . 2 ⊢ (𝜑 → (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ∈ (𝑃 RingHom 𝑅)) |
| 44 | 2, 43 | eqeltrd 2828 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 Ringcrg 20118 CRingccrg 20119 RingHom crh 20354 SubRingcsubrg 20454 Poly1cpl1 22059 evalSub1 ces1 22198 eval1ce1 22199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-evls 21979 df-evl 21980 df-psr1 22062 df-vr1 22063 df-ply1 22064 df-coe1 22065 df-evls1 22200 df-evl1 22201 |
| This theorem is referenced by: aks5lem1 42159 aks5lem2 42160 |
| Copyright terms: Public domain | W3C validator |