![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1rhm | Structured version Visualization version GIF version |
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015.) (Proof shortened by AV, 13-Sep-2019.) |
Ref | Expression |
---|---|
evl1rhm.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1rhm.w | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1rhm.t | ⊢ 𝑇 = (𝑅 ↑s 𝐵) |
evl1rhm.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evl1rhm | ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1rhm.q | . . 3 ⊢ 𝑂 = (eval1‘𝑅) | |
2 | eqid 2799 | . . 3 ⊢ (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅) | |
3 | evl1rhm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 2, 3 | evl1fval 20014 | . 2 ⊢ 𝑂 = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅)) |
5 | evl1rhm.t | . . . 4 ⊢ 𝑇 = (𝑅 ↑s 𝐵) | |
6 | eqid 2799 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) | |
7 | 3, 5, 6 | evls1rhmlem 20008 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
8 | 1on 7806 | . . . . 5 ⊢ 1𝑜 ∈ On | |
9 | eqid 2799 | . . . . . 6 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
10 | eqid 2799 | . . . . . 6 ⊢ (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) = (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) | |
11 | 2, 3, 9, 10 | evlrhm 19847 | . . . . 5 ⊢ ((1𝑜 ∈ On ∧ 𝑅 ∈ CRing) → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
12 | 8, 11 | mpan 682 | . . . 4 ⊢ (𝑅 ∈ CRing → (1𝑜 eval 𝑅) ∈ ((1𝑜 mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
13 | eqidd 2800 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑃) = (Base‘𝑃)) | |
14 | eqidd 2800 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) = (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) | |
15 | evl1rhm.w | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
16 | eqid 2799 | . . . . . . 7 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
17 | eqid 2799 | . . . . . . 7 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
18 | 15, 16, 17 | ply1bas 19887 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅)) |
19 | 18 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ CRing → (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅))) |
20 | eqid 2799 | . . . . . . . 8 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
21 | 15, 9, 20 | ply1plusg 19917 | . . . . . . 7 ⊢ (+g‘𝑃) = (+g‘(1𝑜 mPoly 𝑅)) |
22 | 21 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (+g‘𝑃) = (+g‘(1𝑜 mPoly 𝑅))) |
23 | 22 | oveqdr 6906 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(+g‘𝑃)𝑦) = (𝑥(+g‘(1𝑜 mPoly 𝑅))𝑦)) |
24 | eqidd 2800 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))))) → (𝑥(+g‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦) = (𝑥(+g‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦)) | |
25 | eqid 2799 | . . . . . . . 8 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
26 | 15, 9, 25 | ply1mulr 19919 | . . . . . . 7 ⊢ (.r‘𝑃) = (.r‘(1𝑜 mPoly 𝑅)) |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → (.r‘𝑃) = (.r‘(1𝑜 mPoly 𝑅))) |
28 | 27 | oveqdr 6906 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑃) ∧ 𝑦 ∈ (Base‘𝑃))) → (𝑥(.r‘𝑃)𝑦) = (𝑥(.r‘(1𝑜 mPoly 𝑅))𝑦)) |
29 | eqidd 2800 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜))))) → (𝑥(.r‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦) = (𝑥(.r‘(𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦)) | |
30 | 13, 14, 19, 14, 23, 24, 28, 29 | rhmpropd 19133 | . . . 4 ⊢ (𝑅 ∈ CRing → (𝑃 RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜))) = ((1𝑜 mPoly 𝑅) RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
31 | 12, 30 | eleqtrrd 2881 | . . 3 ⊢ (𝑅 ∈ CRing → (1𝑜 eval 𝑅) ∈ (𝑃 RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) |
32 | rhmco 19055 | . . 3 ⊢ (((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑅 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇) ∧ (1𝑜 eval 𝑅) ∈ (𝑃 RingHom (𝑅 ↑s (𝐵 ↑𝑚 1𝑜)))) → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅)) ∈ (𝑃 RingHom 𝑇)) | |
33 | 7, 31, 32 | syl2anc 580 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑅)) ∈ (𝑃 RingHom 𝑇)) |
34 | 4, 33 | syl5eqel 2882 | 1 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {csn 4368 ↦ cmpt 4922 × cxp 5310 ∘ ccom 5316 Oncon0 5941 ‘cfv 6101 (class class class)co 6878 1𝑜c1o 7792 ↑𝑚 cmap 8095 Basecbs 16184 +gcplusg 16267 .rcmulr 16268 ↑s cpws 16422 CRingccrg 18864 RingHom crh 19030 mPoly cmpl 19676 eval cevl 19827 PwSer1cps1 19867 Poly1cpl1 19869 eval1ce1 20001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-ofr 7132 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-0g 16417 df-gsum 16418 df-prds 16423 df-pws 16425 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-ghm 17971 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-srg 18822 df-ring 18865 df-cring 18866 df-rnghom 19033 df-subrg 19096 df-lmod 19183 df-lss 19251 df-lsp 19293 df-assa 19635 df-asp 19636 df-ascl 19637 df-psr 19679 df-mvr 19680 df-mpl 19681 df-opsr 19683 df-evls 19828 df-evl 19829 df-psr1 19872 df-ply1 19874 df-evl1 20003 |
This theorem is referenced by: fveval1fvcl 20019 evl1addd 20027 evl1subd 20028 evl1muld 20029 evl1expd 20031 pf1const 20032 pf1id 20033 pf1subrg 20034 mpfpf1 20037 pf1mpf 20038 evl1gsummul 20046 evl1scvarpw 20049 ply1remlem 24263 ply1rem 24264 fta1glem1 24266 fta1glem2 24267 fta1g 24268 fta1blem 24269 plypf1 24309 lgsqrlem2 25424 lgsqrlem3 25425 pl1cn 30517 idomrootle 38558 |
Copyright terms: Public domain | W3C validator |