MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumadd Structured version   Visualization version   GIF version

Theorem evl1gsumadd 20521
Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 20487. (Contributed by AV, 15-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumadd.q 𝑄 = (eval1𝑅)
evl1gsumadd.k 𝐾 = (Base‘𝑅)
evl1gsumadd.w 𝑊 = (Poly1𝑅)
evl1gsumadd.p 𝑃 = (𝑅s 𝐾)
evl1gsumadd.b 𝐵 = (Base‘𝑊)
evl1gsumadd.r (𝜑𝑅 ∈ CRing)
evl1gsumadd.y ((𝜑𝑥𝑁) → 𝑌𝐵)
evl1gsumadd.n (𝜑𝑁 ⊆ ℕ0)
evl1gsumadd.0 0 = (0g𝑊)
evl1gsumadd.f (𝜑 → (𝑥𝑁𝑌) finSupp 0 )
Assertion
Ref Expression
evl1gsumadd (𝜑 → (𝑄‘(𝑊 Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑁   𝑥,𝑄   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)   𝑌(𝑥)   0 (𝑥)

Proof of Theorem evl1gsumadd
StepHypRef Expression
1 evl1gsumadd.q . . . . 5 𝑄 = (eval1𝑅)
2 evl1gsumadd.k . . . . 5 𝐾 = (Base‘𝑅)
31, 2evl1fval1 20494 . . . 4 𝑄 = (𝑅 evalSub1 𝐾)
43a1i 11 . . 3 (𝜑𝑄 = (𝑅 evalSub1 𝐾))
54fveq1d 6672 . 2 (𝜑 → (𝑄‘(𝑊 Σg (𝑥𝑁𝑌))) = ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥𝑁𝑌))))
6 evl1gsumadd.w . . . . 5 𝑊 = (Poly1𝑅)
7 evl1gsumadd.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
82ressid 16559 . . . . . . . 8 (𝑅 ∈ CRing → (𝑅s 𝐾) = 𝑅)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝑅s 𝐾) = 𝑅)
109eqcomd 2827 . . . . . 6 (𝜑𝑅 = (𝑅s 𝐾))
1110fveq2d 6674 . . . . 5 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s 𝐾)))
126, 11syl5eq 2868 . . . 4 (𝜑𝑊 = (Poly1‘(𝑅s 𝐾)))
1312fvoveq1d 7178 . . 3 (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥𝑁𝑌))) = ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅s 𝐾)) Σg (𝑥𝑁𝑌))))
14 eqid 2821 . . . 4 (𝑅 evalSub1 𝐾) = (𝑅 evalSub1 𝐾)
15 eqid 2821 . . . 4 (Poly1‘(𝑅s 𝐾)) = (Poly1‘(𝑅s 𝐾))
16 eqid 2821 . . . 4 (0g‘(Poly1‘(𝑅s 𝐾))) = (0g‘(Poly1‘(𝑅s 𝐾)))
17 eqid 2821 . . . 4 (𝑅s 𝐾) = (𝑅s 𝐾)
18 evl1gsumadd.p . . . 4 𝑃 = (𝑅s 𝐾)
19 eqid 2821 . . . 4 (Base‘(Poly1‘(𝑅s 𝐾))) = (Base‘(Poly1‘(𝑅s 𝐾)))
20 crngring 19308 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
212subrgid 19537 . . . . 5 (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅))
227, 20, 213syl 18 . . . 4 (𝜑𝐾 ∈ (SubRing‘𝑅))
23 evl1gsumadd.y . . . . 5 ((𝜑𝑥𝑁) → 𝑌𝐵)
24 evl1gsumadd.b . . . . . 6 𝐵 = (Base‘𝑊)
2512adantr 483 . . . . . . 7 ((𝜑𝑥𝑁) → 𝑊 = (Poly1‘(𝑅s 𝐾)))
2625fveq2d 6674 . . . . . 6 ((𝜑𝑥𝑁) → (Base‘𝑊) = (Base‘(Poly1‘(𝑅s 𝐾))))
2724, 26syl5eq 2868 . . . . 5 ((𝜑𝑥𝑁) → 𝐵 = (Base‘(Poly1‘(𝑅s 𝐾))))
2823, 27eleqtrd 2915 . . . 4 ((𝜑𝑥𝑁) → 𝑌 ∈ (Base‘(Poly1‘(𝑅s 𝐾))))
29 evl1gsumadd.n . . . 4 (𝜑𝑁 ⊆ ℕ0)
30 evl1gsumadd.f . . . . 5 (𝜑 → (𝑥𝑁𝑌) finSupp 0 )
3112eqcomd 2827 . . . . . . 7 (𝜑 → (Poly1‘(𝑅s 𝐾)) = 𝑊)
3231fveq2d 6674 . . . . . 6 (𝜑 → (0g‘(Poly1‘(𝑅s 𝐾))) = (0g𝑊))
33 evl1gsumadd.0 . . . . . 6 0 = (0g𝑊)
3432, 33syl6eqr 2874 . . . . 5 (𝜑 → (0g‘(Poly1‘(𝑅s 𝐾))) = 0 )
3530, 34breqtrrd 5094 . . . 4 (𝜑 → (𝑥𝑁𝑌) finSupp (0g‘(Poly1‘(𝑅s 𝐾))))
3614, 2, 15, 16, 17, 18, 19, 7, 22, 28, 29, 35evls1gsumadd 20487 . . 3 (𝜑 → ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅s 𝐾)) Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))))
3713, 36eqtrd 2856 . 2 (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))))
384fveq1d 6672 . . . . 5 (𝜑 → (𝑄𝑌) = ((𝑅 evalSub1 𝐾)‘𝑌))
3938eqcomd 2827 . . . 4 (𝜑 → ((𝑅 evalSub1 𝐾)‘𝑌) = (𝑄𝑌))
4039mpteq2dv 5162 . . 3 (𝜑 → (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)) = (𝑥𝑁 ↦ (𝑄𝑌)))
4140oveq2d 7172 . 2 (𝜑 → (𝑃 Σg (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
425, 37, 413eqtrd 2860 1 (𝜑 → (𝑄‘(𝑊 Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3936   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156   finSupp cfsupp 8833  0cn0 11898  Basecbs 16483  s cress 16484  0gc0g 16713   Σg cgsu 16714  s cpws 16720  Ringcrg 19297  CRingccrg 19298  SubRingcsubrg 19531  Poly1cpl1 20345   evalSub1 ces1 20476  eval1ce1 20477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-evls 20286  df-evl 20287  df-psr1 20348  df-ply1 20350  df-evls1 20478  df-evl1 20479
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator