Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1gsumadd | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 21048. (Contributed by AV, 15-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsumadd.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1gsumadd.k | ⊢ 𝐾 = (Base‘𝑅) |
evl1gsumadd.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1gsumadd.p | ⊢ 𝑃 = (𝑅 ↑s 𝐾) |
evl1gsumadd.b | ⊢ 𝐵 = (Base‘𝑊) |
evl1gsumadd.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1gsumadd.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
evl1gsumadd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
evl1gsumadd.0 | ⊢ 0 = (0g‘𝑊) |
evl1gsumadd.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) |
Ref | Expression |
---|---|
evl1gsumadd | ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsumadd.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1gsumadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | 1, 2 | evl1fval1 21055 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐾) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐾)) |
5 | 4 | fveq1d 6664 | . 2 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
6 | evl1gsumadd.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑅) | |
7 | evl1gsumadd.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
8 | 2 | ressid 16622 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐾) = 𝑅) |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐾) = 𝑅) |
10 | 9 | eqcomd 2764 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐾)) |
11 | 10 | fveq2d 6666 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐾))) |
12 | 6, 11 | syl5eq 2805 | . . . 4 ⊢ (𝜑 → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
13 | 12 | fvoveq1d 7177 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
14 | eqid 2758 | . . . 4 ⊢ (𝑅 evalSub1 𝐾) = (𝑅 evalSub1 𝐾) | |
15 | eqid 2758 | . . . 4 ⊢ (Poly1‘(𝑅 ↾s 𝐾)) = (Poly1‘(𝑅 ↾s 𝐾)) | |
16 | eqid 2758 | . . . 4 ⊢ (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘(Poly1‘(𝑅 ↾s 𝐾))) | |
17 | eqid 2758 | . . . 4 ⊢ (𝑅 ↾s 𝐾) = (𝑅 ↾s 𝐾) | |
18 | evl1gsumadd.p | . . . 4 ⊢ 𝑃 = (𝑅 ↑s 𝐾) | |
19 | eqid 2758 | . . . 4 ⊢ (Base‘(Poly1‘(𝑅 ↾s 𝐾))) = (Base‘(Poly1‘(𝑅 ↾s 𝐾))) | |
20 | crngring 19382 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
21 | 2 | subrgid 19610 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅)) |
22 | 7, 20, 21 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑅)) |
23 | evl1gsumadd.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
24 | evl1gsumadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
25 | 12 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
26 | 25 | fveq2d 6666 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (Base‘𝑊) = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
27 | 24, 26 | syl5eq 2805 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐵 = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
28 | 23, 27 | eleqtrd 2854 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
29 | evl1gsumadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
30 | evl1gsumadd.f | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) | |
31 | 12 | eqcomd 2764 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s 𝐾)) = 𝑊) |
32 | 31 | fveq2d 6666 | . . . . . 6 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘𝑊)) |
33 | evl1gsumadd.0 | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
34 | 32, 33 | eqtr4di 2811 | . . . . 5 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = 0 ) |
35 | 30, 34 | breqtrrd 5063 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp (0g‘(Poly1‘(𝑅 ↾s 𝐾)))) |
36 | 14, 2, 15, 16, 17, 18, 19, 7, 22, 28, 29, 35 | evls1gsumadd 21048 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
37 | 13, 36 | eqtrd 2793 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
38 | 4 | fveq1d 6664 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑌) = ((𝑅 evalSub1 𝐾)‘𝑌)) |
39 | 38 | eqcomd 2764 | . . . 4 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘𝑌) = (𝑄‘𝑌)) |
40 | 39 | mpteq2dv 5131 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)) = (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) |
41 | 40 | oveq2d 7171 | . 2 ⊢ (𝜑 → (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
42 | 5, 37, 41 | 3eqtrd 2797 | 1 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 class class class wbr 5035 ↦ cmpt 5115 ‘cfv 6339 (class class class)co 7155 finSupp cfsupp 8871 ℕ0cn0 11939 Basecbs 16546 ↾s cress 16547 0gc0g 16776 Σg cgsu 16777 ↑s cpws 16783 Ringcrg 19370 CRingccrg 19371 SubRingcsubrg 19604 Poly1cpl1 20906 evalSub1 ces1 21037 eval1ce1 21038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-ofr 7411 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-sup 8944 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-fz 12945 df-fzo 13088 df-seq 13424 df-hash 13746 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-sca 16644 df-vsca 16645 df-ip 16646 df-tset 16647 df-ple 16648 df-ds 16650 df-hom 16652 df-cco 16653 df-0g 16778 df-gsum 16779 df-prds 16784 df-pws 16786 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-mhm 18027 df-submnd 18028 df-grp 18177 df-minusg 18178 df-sbg 18179 df-mulg 18297 df-subg 18348 df-ghm 18428 df-cntz 18519 df-cmn 18980 df-abl 18981 df-mgp 19313 df-ur 19325 df-srg 19329 df-ring 19372 df-cring 19373 df-rnghom 19543 df-subrg 19606 df-lmod 19709 df-lss 19777 df-lsp 19817 df-assa 20623 df-asp 20624 df-ascl 20625 df-psr 20676 df-mvr 20677 df-mpl 20678 df-opsr 20680 df-evls 20840 df-evl 20841 df-psr1 20909 df-ply1 20911 df-evls1 21039 df-evl1 21040 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |