| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1gsumadd | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 22187. (Contributed by AV, 15-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1gsumadd.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1gsumadd.k | ⊢ 𝐾 = (Base‘𝑅) |
| evl1gsumadd.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1gsumadd.p | ⊢ 𝑃 = (𝑅 ↑s 𝐾) |
| evl1gsumadd.b | ⊢ 𝐵 = (Base‘𝑊) |
| evl1gsumadd.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1gsumadd.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
| evl1gsumadd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
| evl1gsumadd.0 | ⊢ 0 = (0g‘𝑊) |
| evl1gsumadd.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) |
| Ref | Expression |
|---|---|
| evl1gsumadd | ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1gsumadd.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
| 2 | evl1gsumadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 3 | 1, 2 | evl1fval1 22194 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐾) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐾)) |
| 5 | 4 | fveq1d 6842 | . 2 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
| 6 | evl1gsumadd.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 7 | evl1gsumadd.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 8 | 2 | ressid 17190 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐾) = 𝑅) |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐾) = 𝑅) |
| 10 | 9 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐾)) |
| 11 | 10 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐾))) |
| 12 | 6, 11 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
| 13 | 12 | fvoveq1d 7391 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
| 14 | eqid 2729 | . . . 4 ⊢ (𝑅 evalSub1 𝐾) = (𝑅 evalSub1 𝐾) | |
| 15 | eqid 2729 | . . . 4 ⊢ (Poly1‘(𝑅 ↾s 𝐾)) = (Poly1‘(𝑅 ↾s 𝐾)) | |
| 16 | eqid 2729 | . . . 4 ⊢ (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘(Poly1‘(𝑅 ↾s 𝐾))) | |
| 17 | eqid 2729 | . . . 4 ⊢ (𝑅 ↾s 𝐾) = (𝑅 ↾s 𝐾) | |
| 18 | evl1gsumadd.p | . . . 4 ⊢ 𝑃 = (𝑅 ↑s 𝐾) | |
| 19 | eqid 2729 | . . . 4 ⊢ (Base‘(Poly1‘(𝑅 ↾s 𝐾))) = (Base‘(Poly1‘(𝑅 ↾s 𝐾))) | |
| 20 | crngring 20130 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 21 | 2 | subrgid 20458 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅)) |
| 22 | 7, 20, 21 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑅)) |
| 23 | evl1gsumadd.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
| 24 | evl1gsumadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
| 25 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
| 26 | 25 | fveq2d 6844 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (Base‘𝑊) = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
| 27 | 24, 26 | eqtrid 2776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐵 = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
| 28 | 23, 27 | eleqtrd 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
| 29 | evl1gsumadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
| 30 | evl1gsumadd.f | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) | |
| 31 | 12 | eqcomd 2735 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s 𝐾)) = 𝑊) |
| 32 | 31 | fveq2d 6844 | . . . . . 6 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘𝑊)) |
| 33 | evl1gsumadd.0 | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 34 | 32, 33 | eqtr4di 2782 | . . . . 5 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = 0 ) |
| 35 | 30, 34 | breqtrrd 5130 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp (0g‘(Poly1‘(𝑅 ↾s 𝐾)))) |
| 36 | 14, 2, 15, 16, 17, 18, 19, 7, 22, 28, 29, 35 | evls1gsumadd 22187 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
| 37 | 13, 36 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
| 38 | 4 | fveq1d 6842 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑌) = ((𝑅 evalSub1 𝐾)‘𝑌)) |
| 39 | 38 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘𝑌) = (𝑄‘𝑌)) |
| 40 | 39 | mpteq2dv 5196 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)) = (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) |
| 41 | 40 | oveq2d 7385 | . 2 ⊢ (𝜑 → (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| 42 | 5, 37, 41 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 finSupp cfsupp 9288 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 0gc0g 17378 Σg cgsu 17379 ↑s cpws 17385 Ringcrg 20118 CRingccrg 20119 SubRingcsubrg 20454 Poly1cpl1 22037 evalSub1 ces1 22176 eval1ce1 22177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-evl 21958 df-psr1 22040 df-ply1 22042 df-evls1 22178 df-evl1 22179 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |