![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1gsumadd | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 21772. (Contributed by AV, 15-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsumadd.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1gsumadd.k | ⊢ 𝐾 = (Base‘𝑅) |
evl1gsumadd.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1gsumadd.p | ⊢ 𝑃 = (𝑅 ↑s 𝐾) |
evl1gsumadd.b | ⊢ 𝐵 = (Base‘𝑊) |
evl1gsumadd.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1gsumadd.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
evl1gsumadd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
evl1gsumadd.0 | ⊢ 0 = (0g‘𝑊) |
evl1gsumadd.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) |
Ref | Expression |
---|---|
evl1gsumadd | ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsumadd.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1gsumadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | 1, 2 | evl1fval1 21779 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐾) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐾)) |
5 | 4 | fveq1d 6880 | . 2 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
6 | evl1gsumadd.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑅) | |
7 | evl1gsumadd.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
8 | 2 | ressid 17171 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐾) = 𝑅) |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐾) = 𝑅) |
10 | 9 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐾)) |
11 | 10 | fveq2d 6882 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐾))) |
12 | 6, 11 | eqtrid 2783 | . . . 4 ⊢ (𝜑 → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
13 | 12 | fvoveq1d 7415 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
14 | eqid 2731 | . . . 4 ⊢ (𝑅 evalSub1 𝐾) = (𝑅 evalSub1 𝐾) | |
15 | eqid 2731 | . . . 4 ⊢ (Poly1‘(𝑅 ↾s 𝐾)) = (Poly1‘(𝑅 ↾s 𝐾)) | |
16 | eqid 2731 | . . . 4 ⊢ (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘(Poly1‘(𝑅 ↾s 𝐾))) | |
17 | eqid 2731 | . . . 4 ⊢ (𝑅 ↾s 𝐾) = (𝑅 ↾s 𝐾) | |
18 | evl1gsumadd.p | . . . 4 ⊢ 𝑃 = (𝑅 ↑s 𝐾) | |
19 | eqid 2731 | . . . 4 ⊢ (Base‘(Poly1‘(𝑅 ↾s 𝐾))) = (Base‘(Poly1‘(𝑅 ↾s 𝐾))) | |
20 | crngring 20026 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
21 | 2 | subrgid 20314 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅)) |
22 | 7, 20, 21 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑅)) |
23 | evl1gsumadd.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
24 | evl1gsumadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
25 | 12 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
26 | 25 | fveq2d 6882 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (Base‘𝑊) = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
27 | 24, 26 | eqtrid 2783 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐵 = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
28 | 23, 27 | eleqtrd 2834 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
29 | evl1gsumadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
30 | evl1gsumadd.f | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) | |
31 | 12 | eqcomd 2737 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s 𝐾)) = 𝑊) |
32 | 31 | fveq2d 6882 | . . . . . 6 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘𝑊)) |
33 | evl1gsumadd.0 | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
34 | 32, 33 | eqtr4di 2789 | . . . . 5 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = 0 ) |
35 | 30, 34 | breqtrrd 5169 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp (0g‘(Poly1‘(𝑅 ↾s 𝐾)))) |
36 | 14, 2, 15, 16, 17, 18, 19, 7, 22, 28, 29, 35 | evls1gsumadd 21772 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
37 | 13, 36 | eqtrd 2771 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
38 | 4 | fveq1d 6880 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑌) = ((𝑅 evalSub1 𝐾)‘𝑌)) |
39 | 38 | eqcomd 2737 | . . . 4 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘𝑌) = (𝑄‘𝑌)) |
40 | 39 | mpteq2dv 5243 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)) = (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) |
41 | 40 | oveq2d 7409 | . 2 ⊢ (𝜑 → (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
42 | 5, 37, 41 | 3eqtrd 2775 | 1 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⊆ wss 3944 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6532 (class class class)co 7393 finSupp cfsupp 9344 ℕ0cn0 12454 Basecbs 17126 ↾s cress 17155 0gc0g 17367 Σg cgsu 17368 ↑s cpws 17374 Ringcrg 20014 CRingccrg 20015 SubRingcsubrg 20308 Poly1cpl1 21630 evalSub1 ces1 21761 eval1ce1 21762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-ofr 7654 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-sup 9419 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-fz 13467 df-fzo 13610 df-seq 13949 df-hash 14273 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17369 df-gsum 17370 df-prds 17375 df-pws 17377 df-mre 17512 df-mrc 17513 df-acs 17515 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-mulg 18923 df-subg 18975 df-ghm 19056 df-cntz 19147 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-srg 19968 df-ring 20016 df-cring 20017 df-rnghom 20201 df-subrg 20310 df-lmod 20422 df-lss 20492 df-lsp 20532 df-assa 21341 df-asp 21342 df-ascl 21343 df-psr 21393 df-mvr 21394 df-mpl 21395 df-opsr 21397 df-evls 21564 df-evl 21565 df-psr1 21633 df-ply1 21635 df-evls1 21763 df-evl1 21764 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |