Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1gsumadd | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 21400. (Contributed by AV, 15-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsumadd.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1gsumadd.k | ⊢ 𝐾 = (Base‘𝑅) |
evl1gsumadd.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1gsumadd.p | ⊢ 𝑃 = (𝑅 ↑s 𝐾) |
evl1gsumadd.b | ⊢ 𝐵 = (Base‘𝑊) |
evl1gsumadd.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1gsumadd.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
evl1gsumadd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
evl1gsumadd.0 | ⊢ 0 = (0g‘𝑊) |
evl1gsumadd.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) |
Ref | Expression |
---|---|
evl1gsumadd | ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsumadd.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
2 | evl1gsumadd.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | 1, 2 | evl1fval1 21407 | . . . 4 ⊢ 𝑄 = (𝑅 evalSub1 𝐾) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑅 evalSub1 𝐾)) |
5 | 4 | fveq1d 6758 | . 2 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
6 | evl1gsumadd.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑅) | |
7 | evl1gsumadd.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
8 | 2 | ressid 16880 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐾) = 𝑅) |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑅 ↾s 𝐾) = 𝑅) |
10 | 9 | eqcomd 2744 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (𝑅 ↾s 𝐾)) |
11 | 10 | fveq2d 6760 | . . . . 5 ⊢ (𝜑 → (Poly1‘𝑅) = (Poly1‘(𝑅 ↾s 𝐾))) |
12 | 6, 11 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
13 | 12 | fvoveq1d 7277 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
14 | eqid 2738 | . . . 4 ⊢ (𝑅 evalSub1 𝐾) = (𝑅 evalSub1 𝐾) | |
15 | eqid 2738 | . . . 4 ⊢ (Poly1‘(𝑅 ↾s 𝐾)) = (Poly1‘(𝑅 ↾s 𝐾)) | |
16 | eqid 2738 | . . . 4 ⊢ (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘(Poly1‘(𝑅 ↾s 𝐾))) | |
17 | eqid 2738 | . . . 4 ⊢ (𝑅 ↾s 𝐾) = (𝑅 ↾s 𝐾) | |
18 | evl1gsumadd.p | . . . 4 ⊢ 𝑃 = (𝑅 ↑s 𝐾) | |
19 | eqid 2738 | . . . 4 ⊢ (Base‘(Poly1‘(𝑅 ↾s 𝐾))) = (Base‘(Poly1‘(𝑅 ↾s 𝐾))) | |
20 | crngring 19710 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
21 | 2 | subrgid 19941 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅)) |
22 | 7, 20, 21 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (SubRing‘𝑅)) |
23 | evl1gsumadd.y | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
24 | evl1gsumadd.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
25 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑊 = (Poly1‘(𝑅 ↾s 𝐾))) |
26 | 25 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → (Base‘𝑊) = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
27 | 24, 26 | eqtrid 2790 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝐵 = (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
28 | 23, 27 | eleqtrd 2841 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ (Base‘(Poly1‘(𝑅 ↾s 𝐾)))) |
29 | evl1gsumadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
30 | evl1gsumadd.f | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) | |
31 | 12 | eqcomd 2744 | . . . . . . 7 ⊢ (𝜑 → (Poly1‘(𝑅 ↾s 𝐾)) = 𝑊) |
32 | 31 | fveq2d 6760 | . . . . . 6 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = (0g‘𝑊)) |
33 | evl1gsumadd.0 | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
34 | 32, 33 | eqtr4di 2797 | . . . . 5 ⊢ (𝜑 → (0g‘(Poly1‘(𝑅 ↾s 𝐾))) = 0 ) |
35 | 30, 34 | breqtrrd 5098 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp (0g‘(Poly1‘(𝑅 ↾s 𝐾)))) |
36 | 14, 2, 15, 16, 17, 18, 19, 7, 22, 28, 29, 35 | evls1gsumadd 21400 | . . 3 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅 ↾s 𝐾)) Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
37 | 13, 36 | eqtrd 2778 | . 2 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)))) |
38 | 4 | fveq1d 6758 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑌) = ((𝑅 evalSub1 𝐾)‘𝑌)) |
39 | 38 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → ((𝑅 evalSub1 𝐾)‘𝑌) = (𝑄‘𝑌)) |
40 | 39 | mpteq2dv 5172 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)) = (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) |
41 | 40 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝑃 Σg (𝑥 ∈ 𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
42 | 5, 37, 41 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 finSupp cfsupp 9058 ℕ0cn0 12163 Basecbs 16840 ↾s cress 16867 0gc0g 17067 Σg cgsu 17068 ↑s cpws 17074 Ringcrg 19698 CRingccrg 19699 SubRingcsubrg 19935 Poly1cpl1 21258 evalSub1 ces1 21389 eval1ce1 21390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-assa 20970 df-asp 20971 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-evls 21192 df-evl 21193 df-psr1 21261 df-ply1 21263 df-evls1 21391 df-evl1 21392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |