MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1gsumadd Structured version   Visualization version   GIF version

Theorem evl1gsumadd 21806
Description: Univariate polynomial evaluation maps (additive) group sums to group sums. Remark: the proof would be shorter if the theorem is proved directly instead of using evls1gsumadd 21772. (Contributed by AV, 15-Sep-2019.)
Hypotheses
Ref Expression
evl1gsumadd.q 𝑄 = (eval1𝑅)
evl1gsumadd.k 𝐾 = (Base‘𝑅)
evl1gsumadd.w 𝑊 = (Poly1𝑅)
evl1gsumadd.p 𝑃 = (𝑅s 𝐾)
evl1gsumadd.b 𝐵 = (Base‘𝑊)
evl1gsumadd.r (𝜑𝑅 ∈ CRing)
evl1gsumadd.y ((𝜑𝑥𝑁) → 𝑌𝐵)
evl1gsumadd.n (𝜑𝑁 ⊆ ℕ0)
evl1gsumadd.0 0 = (0g𝑊)
evl1gsumadd.f (𝜑 → (𝑥𝑁𝑌) finSupp 0 )
Assertion
Ref Expression
evl1gsumadd (𝜑 → (𝑄‘(𝑊 Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑁   𝑥,𝑄   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)   𝑌(𝑥)   0 (𝑥)

Proof of Theorem evl1gsumadd
StepHypRef Expression
1 evl1gsumadd.q . . . . 5 𝑄 = (eval1𝑅)
2 evl1gsumadd.k . . . . 5 𝐾 = (Base‘𝑅)
31, 2evl1fval1 21779 . . . 4 𝑄 = (𝑅 evalSub1 𝐾)
43a1i 11 . . 3 (𝜑𝑄 = (𝑅 evalSub1 𝐾))
54fveq1d 6880 . 2 (𝜑 → (𝑄‘(𝑊 Σg (𝑥𝑁𝑌))) = ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥𝑁𝑌))))
6 evl1gsumadd.w . . . . 5 𝑊 = (Poly1𝑅)
7 evl1gsumadd.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
82ressid 17171 . . . . . . . 8 (𝑅 ∈ CRing → (𝑅s 𝐾) = 𝑅)
97, 8syl 17 . . . . . . 7 (𝜑 → (𝑅s 𝐾) = 𝑅)
109eqcomd 2737 . . . . . 6 (𝜑𝑅 = (𝑅s 𝐾))
1110fveq2d 6882 . . . . 5 (𝜑 → (Poly1𝑅) = (Poly1‘(𝑅s 𝐾)))
126, 11eqtrid 2783 . . . 4 (𝜑𝑊 = (Poly1‘(𝑅s 𝐾)))
1312fvoveq1d 7415 . . 3 (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥𝑁𝑌))) = ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅s 𝐾)) Σg (𝑥𝑁𝑌))))
14 eqid 2731 . . . 4 (𝑅 evalSub1 𝐾) = (𝑅 evalSub1 𝐾)
15 eqid 2731 . . . 4 (Poly1‘(𝑅s 𝐾)) = (Poly1‘(𝑅s 𝐾))
16 eqid 2731 . . . 4 (0g‘(Poly1‘(𝑅s 𝐾))) = (0g‘(Poly1‘(𝑅s 𝐾)))
17 eqid 2731 . . . 4 (𝑅s 𝐾) = (𝑅s 𝐾)
18 evl1gsumadd.p . . . 4 𝑃 = (𝑅s 𝐾)
19 eqid 2731 . . . 4 (Base‘(Poly1‘(𝑅s 𝐾))) = (Base‘(Poly1‘(𝑅s 𝐾)))
20 crngring 20026 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
212subrgid 20314 . . . . 5 (𝑅 ∈ Ring → 𝐾 ∈ (SubRing‘𝑅))
227, 20, 213syl 18 . . . 4 (𝜑𝐾 ∈ (SubRing‘𝑅))
23 evl1gsumadd.y . . . . 5 ((𝜑𝑥𝑁) → 𝑌𝐵)
24 evl1gsumadd.b . . . . . 6 𝐵 = (Base‘𝑊)
2512adantr 481 . . . . . . 7 ((𝜑𝑥𝑁) → 𝑊 = (Poly1‘(𝑅s 𝐾)))
2625fveq2d 6882 . . . . . 6 ((𝜑𝑥𝑁) → (Base‘𝑊) = (Base‘(Poly1‘(𝑅s 𝐾))))
2724, 26eqtrid 2783 . . . . 5 ((𝜑𝑥𝑁) → 𝐵 = (Base‘(Poly1‘(𝑅s 𝐾))))
2823, 27eleqtrd 2834 . . . 4 ((𝜑𝑥𝑁) → 𝑌 ∈ (Base‘(Poly1‘(𝑅s 𝐾))))
29 evl1gsumadd.n . . . 4 (𝜑𝑁 ⊆ ℕ0)
30 evl1gsumadd.f . . . . 5 (𝜑 → (𝑥𝑁𝑌) finSupp 0 )
3112eqcomd 2737 . . . . . . 7 (𝜑 → (Poly1‘(𝑅s 𝐾)) = 𝑊)
3231fveq2d 6882 . . . . . 6 (𝜑 → (0g‘(Poly1‘(𝑅s 𝐾))) = (0g𝑊))
33 evl1gsumadd.0 . . . . . 6 0 = (0g𝑊)
3432, 33eqtr4di 2789 . . . . 5 (𝜑 → (0g‘(Poly1‘(𝑅s 𝐾))) = 0 )
3530, 34breqtrrd 5169 . . . 4 (𝜑 → (𝑥𝑁𝑌) finSupp (0g‘(Poly1‘(𝑅s 𝐾))))
3614, 2, 15, 16, 17, 18, 19, 7, 22, 28, 29, 35evls1gsumadd 21772 . . 3 (𝜑 → ((𝑅 evalSub1 𝐾)‘((Poly1‘(𝑅s 𝐾)) Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))))
3713, 36eqtrd 2771 . 2 (𝜑 → ((𝑅 evalSub1 𝐾)‘(𝑊 Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))))
384fveq1d 6880 . . . . 5 (𝜑 → (𝑄𝑌) = ((𝑅 evalSub1 𝐾)‘𝑌))
3938eqcomd 2737 . . . 4 (𝜑 → ((𝑅 evalSub1 𝐾)‘𝑌) = (𝑄𝑌))
4039mpteq2dv 5243 . . 3 (𝜑 → (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌)) = (𝑥𝑁 ↦ (𝑄𝑌)))
4140oveq2d 7409 . 2 (𝜑 → (𝑃 Σg (𝑥𝑁 ↦ ((𝑅 evalSub1 𝐾)‘𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
425, 37, 413eqtrd 2775 1 (𝜑 → (𝑄‘(𝑊 Σg (𝑥𝑁𝑌))) = (𝑃 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wss 3944   class class class wbr 5141  cmpt 5224  cfv 6532  (class class class)co 7393   finSupp cfsupp 9344  0cn0 12454  Basecbs 17126  s cress 17155  0gc0g 17367   Σg cgsu 17368  s cpws 17374  Ringcrg 20014  CRingccrg 20015  SubRingcsubrg 20308  Poly1cpl1 21630   evalSub1 ces1 21761  eval1ce1 21762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-ofr 7654  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-fzo 13610  df-seq 13949  df-hash 14273  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17369  df-gsum 17370  df-prds 17375  df-pws 17377  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mulg 18923  df-subg 18975  df-ghm 19056  df-cntz 19147  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-srg 19968  df-ring 20016  df-cring 20017  df-rnghom 20201  df-subrg 20310  df-lmod 20422  df-lss 20492  df-lsp 20532  df-assa 21341  df-asp 21342  df-ascl 21343  df-psr 21393  df-mvr 21394  df-mpl 21395  df-opsr 21397  df-evls 21564  df-evl 21565  df-psr1 21633  df-ply1 21635  df-evls1 21763  df-evl1 21764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator