MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1scasrng Structured version   Visualization version   GIF version

Theorem evls1scasrng 20497
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.)
Hypotheses
Ref Expression
evls1scasrng.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1scasrng.o 𝑂 = (eval1𝑆)
evls1scasrng.w 𝑊 = (Poly1𝑈)
evls1scasrng.u 𝑈 = (𝑆s 𝑅)
evls1scasrng.p 𝑃 = (Poly1𝑆)
evls1scasrng.b 𝐵 = (Base‘𝑆)
evls1scasrng.a 𝐴 = (algSc‘𝑊)
evls1scasrng.c 𝐶 = (algSc‘𝑃)
evls1scasrng.s (𝜑𝑆 ∈ CRing)
evls1scasrng.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1scasrng.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evls1scasrng (𝜑 → (𝑄‘(𝐴𝑋)) = (𝑂‘(𝐶𝑋)))

Proof of Theorem evls1scasrng
StepHypRef Expression
1 evls1scasrng.c . . . . . 6 𝐶 = (algSc‘𝑃)
2 evls1scasrng.p . . . . . . . 8 𝑃 = (Poly1𝑆)
3 evls1scasrng.s . . . . . . . . . 10 (𝜑𝑆 ∈ CRing)
4 evls1scasrng.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
54ressid 16554 . . . . . . . . . . 11 (𝑆 ∈ CRing → (𝑆s 𝐵) = 𝑆)
65eqcomd 2826 . . . . . . . . . 10 (𝑆 ∈ CRing → 𝑆 = (𝑆s 𝐵))
73, 6syl 17 . . . . . . . . 9 (𝜑𝑆 = (𝑆s 𝐵))
87fveq2d 6667 . . . . . . . 8 (𝜑 → (Poly1𝑆) = (Poly1‘(𝑆s 𝐵)))
92, 8syl5eq 2867 . . . . . . 7 (𝜑𝑃 = (Poly1‘(𝑆s 𝐵)))
109fveq2d 6667 . . . . . 6 (𝜑 → (algSc‘𝑃) = (algSc‘(Poly1‘(𝑆s 𝐵))))
111, 10syl5eq 2867 . . . . 5 (𝜑𝐶 = (algSc‘(Poly1‘(𝑆s 𝐵))))
1211fveq1d 6665 . . . 4 (𝜑 → (𝐶𝑋) = ((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋))
1312fveq2d 6667 . . 3 (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)) = ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋)))
14 eqid 2820 . . . 4 (𝑆 evalSub1 𝐵) = (𝑆 evalSub1 𝐵)
15 eqid 2820 . . . 4 (Poly1‘(𝑆s 𝐵)) = (Poly1‘(𝑆s 𝐵))
16 eqid 2820 . . . 4 (𝑆s 𝐵) = (𝑆s 𝐵)
17 eqid 2820 . . . 4 (algSc‘(Poly1‘(𝑆s 𝐵))) = (algSc‘(Poly1‘(𝑆s 𝐵)))
18 crngring 19303 . . . . 5 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
194subrgid 19532 . . . . 5 (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆))
203, 18, 193syl 18 . . . 4 (𝜑𝐵 ∈ (SubRing‘𝑆))
21 evls1scasrng.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
224subrgss 19531 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
2321, 22syl 17 . . . . 5 (𝜑𝑅𝐵)
24 evls1scasrng.x . . . . 5 (𝜑𝑋𝑅)
2523, 24sseldd 3961 . . . 4 (𝜑𝑋𝐵)
2614, 15, 16, 4, 17, 3, 20, 25evls1sca 20481 . . 3 (𝜑 → ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋)) = (𝐵 × {𝑋}))
2713, 26eqtrd 2855 . 2 (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)) = (𝐵 × {𝑋}))
28 evls1scasrng.o . . . . 5 𝑂 = (eval1𝑆)
2928, 4evl1fval1 20489 . . . 4 𝑂 = (𝑆 evalSub1 𝐵)
3029a1i 11 . . 3 (𝜑𝑂 = (𝑆 evalSub1 𝐵))
3130fveq1d 6665 . 2 (𝜑 → (𝑂‘(𝐶𝑋)) = ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)))
32 evls1scasrng.q . . 3 𝑄 = (𝑆 evalSub1 𝑅)
33 evls1scasrng.w . . 3 𝑊 = (Poly1𝑈)
34 evls1scasrng.u . . 3 𝑈 = (𝑆s 𝑅)
35 evls1scasrng.a . . 3 𝐴 = (algSc‘𝑊)
3632, 33, 34, 4, 35, 3, 21, 24evls1sca 20481 . 2 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))
3727, 31, 363eqtr4rd 2866 1 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝑂‘(𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wss 3929  {csn 4560   × cxp 5546  cfv 6348  (class class class)co 7149  Basecbs 16478  s cress 16479  Ringcrg 19292  CRingccrg 19293  SubRingcsubrg 19526  algSccascl 20079  Poly1cpl1 20340   evalSub1 ces1 20471  eval1ce1 20472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-ofr 7403  df-om 7574  df-1st 7682  df-2nd 7683  df-supp 7824  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fsupp 8827  df-sup 8899  df-oi 8967  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-fzo 13031  df-seq 13367  df-hash 13688  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19235  df-ur 19247  df-srg 19251  df-ring 19294  df-cring 19295  df-rnghom 19462  df-subrg 19528  df-lmod 19631  df-lss 19699  df-lsp 19739  df-assa 20080  df-asp 20081  df-ascl 20082  df-psr 20131  df-mvr 20132  df-mpl 20133  df-opsr 20135  df-evls 20281  df-evl 20282  df-psr1 20343  df-ply1 20345  df-evls1 20473  df-evl1 20474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator