MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1scasrng Structured version   Visualization version   GIF version

Theorem evls1scasrng 22226
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.)
Hypotheses
Ref Expression
evls1scasrng.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1scasrng.o 𝑂 = (eval1𝑆)
evls1scasrng.w 𝑊 = (Poly1𝑈)
evls1scasrng.u 𝑈 = (𝑆s 𝑅)
evls1scasrng.p 𝑃 = (Poly1𝑆)
evls1scasrng.b 𝐵 = (Base‘𝑆)
evls1scasrng.a 𝐴 = (algSc‘𝑊)
evls1scasrng.c 𝐶 = (algSc‘𝑃)
evls1scasrng.s (𝜑𝑆 ∈ CRing)
evls1scasrng.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1scasrng.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evls1scasrng (𝜑 → (𝑄‘(𝐴𝑋)) = (𝑂‘(𝐶𝑋)))

Proof of Theorem evls1scasrng
StepHypRef Expression
1 evls1scasrng.c . . . . . 6 𝐶 = (algSc‘𝑃)
2 evls1scasrng.p . . . . . . . 8 𝑃 = (Poly1𝑆)
3 evls1scasrng.s . . . . . . . . . 10 (𝜑𝑆 ∈ CRing)
4 evls1scasrng.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
54ressid 17214 . . . . . . . . . . 11 (𝑆 ∈ CRing → (𝑆s 𝐵) = 𝑆)
65eqcomd 2735 . . . . . . . . . 10 (𝑆 ∈ CRing → 𝑆 = (𝑆s 𝐵))
73, 6syl 17 . . . . . . . . 9 (𝜑𝑆 = (𝑆s 𝐵))
87fveq2d 6862 . . . . . . . 8 (𝜑 → (Poly1𝑆) = (Poly1‘(𝑆s 𝐵)))
92, 8eqtrid 2776 . . . . . . 7 (𝜑𝑃 = (Poly1‘(𝑆s 𝐵)))
109fveq2d 6862 . . . . . 6 (𝜑 → (algSc‘𝑃) = (algSc‘(Poly1‘(𝑆s 𝐵))))
111, 10eqtrid 2776 . . . . 5 (𝜑𝐶 = (algSc‘(Poly1‘(𝑆s 𝐵))))
1211fveq1d 6860 . . . 4 (𝜑 → (𝐶𝑋) = ((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋))
1312fveq2d 6862 . . 3 (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)) = ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋)))
14 eqid 2729 . . . 4 (𝑆 evalSub1 𝐵) = (𝑆 evalSub1 𝐵)
15 eqid 2729 . . . 4 (Poly1‘(𝑆s 𝐵)) = (Poly1‘(𝑆s 𝐵))
16 eqid 2729 . . . 4 (𝑆s 𝐵) = (𝑆s 𝐵)
17 eqid 2729 . . . 4 (algSc‘(Poly1‘(𝑆s 𝐵))) = (algSc‘(Poly1‘(𝑆s 𝐵)))
18 crngring 20154 . . . . 5 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
194subrgid 20482 . . . . 5 (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆))
203, 18, 193syl 18 . . . 4 (𝜑𝐵 ∈ (SubRing‘𝑆))
21 evls1scasrng.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
224subrgss 20481 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
2321, 22syl 17 . . . . 5 (𝜑𝑅𝐵)
24 evls1scasrng.x . . . . 5 (𝜑𝑋𝑅)
2523, 24sseldd 3947 . . . 4 (𝜑𝑋𝐵)
2614, 15, 16, 4, 17, 3, 20, 25evls1sca 22210 . . 3 (𝜑 → ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋)) = (𝐵 × {𝑋}))
2713, 26eqtrd 2764 . 2 (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)) = (𝐵 × {𝑋}))
28 evls1scasrng.o . . . . 5 𝑂 = (eval1𝑆)
2928, 4evl1fval1 22218 . . . 4 𝑂 = (𝑆 evalSub1 𝐵)
3029a1i 11 . . 3 (𝜑𝑂 = (𝑆 evalSub1 𝐵))
3130fveq1d 6860 . 2 (𝜑 → (𝑂‘(𝐶𝑋)) = ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)))
32 evls1scasrng.q . . 3 𝑄 = (𝑆 evalSub1 𝑅)
33 evls1scasrng.w . . 3 𝑊 = (Poly1𝑈)
34 evls1scasrng.u . . 3 𝑈 = (𝑆s 𝑅)
35 evls1scasrng.a . . 3 𝐴 = (algSc‘𝑊)
3632, 33, 34, 4, 35, 3, 21, 24evls1sca 22210 . 2 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))
3727, 31, 363eqtr4rd 2775 1 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝑂‘(𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Ringcrg 20142  CRingccrg 20143  SubRingcsubrg 20478  algSccascl 21761  Poly1cpl1 22061   evalSub1 ces1 22200  eval1ce1 22201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-ply1 22066  df-evls1 22202  df-evl1 22203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator