![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1scasrng | Structured version Visualization version GIF version |
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.) |
Ref | Expression |
---|---|
evls1scasrng.q | β’ π = (π evalSub1 π ) |
evls1scasrng.o | β’ π = (eval1βπ) |
evls1scasrng.w | β’ π = (Poly1βπ) |
evls1scasrng.u | β’ π = (π βΎs π ) |
evls1scasrng.p | β’ π = (Poly1βπ) |
evls1scasrng.b | β’ π΅ = (Baseβπ) |
evls1scasrng.a | β’ π΄ = (algScβπ) |
evls1scasrng.c | β’ πΆ = (algScβπ) |
evls1scasrng.s | β’ (π β π β CRing) |
evls1scasrng.r | β’ (π β π β (SubRingβπ)) |
evls1scasrng.x | β’ (π β π β π ) |
Ref | Expression |
---|---|
evls1scasrng | β’ (π β (πβ(π΄βπ)) = (πβ(πΆβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1scasrng.c | . . . . . 6 β’ πΆ = (algScβπ) | |
2 | evls1scasrng.p | . . . . . . . 8 β’ π = (Poly1βπ) | |
3 | evls1scasrng.s | . . . . . . . . . 10 β’ (π β π β CRing) | |
4 | evls1scasrng.b | . . . . . . . . . . . 12 β’ π΅ = (Baseβπ) | |
5 | 4 | ressid 17185 | . . . . . . . . . . 11 β’ (π β CRing β (π βΎs π΅) = π) |
6 | 5 | eqcomd 2738 | . . . . . . . . . 10 β’ (π β CRing β π = (π βΎs π΅)) |
7 | 3, 6 | syl 17 | . . . . . . . . 9 β’ (π β π = (π βΎs π΅)) |
8 | 7 | fveq2d 6892 | . . . . . . . 8 β’ (π β (Poly1βπ) = (Poly1β(π βΎs π΅))) |
9 | 2, 8 | eqtrid 2784 | . . . . . . 7 β’ (π β π = (Poly1β(π βΎs π΅))) |
10 | 9 | fveq2d 6892 | . . . . . 6 β’ (π β (algScβπ) = (algScβ(Poly1β(π βΎs π΅)))) |
11 | 1, 10 | eqtrid 2784 | . . . . 5 β’ (π β πΆ = (algScβ(Poly1β(π βΎs π΅)))) |
12 | 11 | fveq1d 6890 | . . . 4 β’ (π β (πΆβπ) = ((algScβ(Poly1β(π βΎs π΅)))βπ)) |
13 | 12 | fveq2d 6892 | . . 3 β’ (π β ((π evalSub1 π΅)β(πΆβπ)) = ((π evalSub1 π΅)β((algScβ(Poly1β(π βΎs π΅)))βπ))) |
14 | eqid 2732 | . . . 4 β’ (π evalSub1 π΅) = (π evalSub1 π΅) | |
15 | eqid 2732 | . . . 4 β’ (Poly1β(π βΎs π΅)) = (Poly1β(π βΎs π΅)) | |
16 | eqid 2732 | . . . 4 β’ (π βΎs π΅) = (π βΎs π΅) | |
17 | eqid 2732 | . . . 4 β’ (algScβ(Poly1β(π βΎs π΅))) = (algScβ(Poly1β(π βΎs π΅))) | |
18 | crngring 20061 | . . . . 5 β’ (π β CRing β π β Ring) | |
19 | 4 | subrgid 20357 | . . . . 5 β’ (π β Ring β π΅ β (SubRingβπ)) |
20 | 3, 18, 19 | 3syl 18 | . . . 4 β’ (π β π΅ β (SubRingβπ)) |
21 | evls1scasrng.r | . . . . . 6 β’ (π β π β (SubRingβπ)) | |
22 | 4 | subrgss 20356 | . . . . . 6 β’ (π β (SubRingβπ) β π β π΅) |
23 | 21, 22 | syl 17 | . . . . 5 β’ (π β π β π΅) |
24 | evls1scasrng.x | . . . . 5 β’ (π β π β π ) | |
25 | 23, 24 | sseldd 3982 | . . . 4 β’ (π β π β π΅) |
26 | 14, 15, 16, 4, 17, 3, 20, 25 | evls1sca 21833 | . . 3 β’ (π β ((π evalSub1 π΅)β((algScβ(Poly1β(π βΎs π΅)))βπ)) = (π΅ Γ {π})) |
27 | 13, 26 | eqtrd 2772 | . 2 β’ (π β ((π evalSub1 π΅)β(πΆβπ)) = (π΅ Γ {π})) |
28 | evls1scasrng.o | . . . . 5 β’ π = (eval1βπ) | |
29 | 28, 4 | evl1fval1 21841 | . . . 4 β’ π = (π evalSub1 π΅) |
30 | 29 | a1i 11 | . . 3 β’ (π β π = (π evalSub1 π΅)) |
31 | 30 | fveq1d 6890 | . 2 β’ (π β (πβ(πΆβπ)) = ((π evalSub1 π΅)β(πΆβπ))) |
32 | evls1scasrng.q | . . 3 β’ π = (π evalSub1 π ) | |
33 | evls1scasrng.w | . . 3 β’ π = (Poly1βπ) | |
34 | evls1scasrng.u | . . 3 β’ π = (π βΎs π ) | |
35 | evls1scasrng.a | . . 3 β’ π΄ = (algScβπ) | |
36 | 32, 33, 34, 4, 35, 3, 21, 24 | evls1sca 21833 | . 2 β’ (π β (πβ(π΄βπ)) = (π΅ Γ {π})) |
37 | 27, 31, 36 | 3eqtr4rd 2783 | 1 β’ (π β (πβ(π΄βπ)) = (πβ(πΆβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 {csn 4627 Γ cxp 5673 βcfv 6540 (class class class)co 7405 Basecbs 17140 βΎs cress 17169 Ringcrg 20049 CRingccrg 20050 SubRingcsubrg 20351 algSccascl 21398 Poly1cpl1 21692 evalSub1 ces1 21823 eval1ce1 21824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-srg 20003 df-ring 20051 df-cring 20052 df-rnghom 20243 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-assa 21399 df-asp 21400 df-ascl 21401 df-psr 21453 df-mvr 21454 df-mpl 21455 df-opsr 21457 df-evls 21626 df-evl 21627 df-psr1 21695 df-ply1 21697 df-evls1 21825 df-evl1 21826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |