![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1scasrng | Structured version Visualization version GIF version |
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.) |
Ref | Expression |
---|---|
evls1scasrng.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1scasrng.o | ⊢ 𝑂 = (eval1‘𝑆) |
evls1scasrng.w | ⊢ 𝑊 = (Poly1‘𝑈) |
evls1scasrng.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1scasrng.p | ⊢ 𝑃 = (Poly1‘𝑆) |
evls1scasrng.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1scasrng.a | ⊢ 𝐴 = (algSc‘𝑊) |
evls1scasrng.c | ⊢ 𝐶 = (algSc‘𝑃) |
evls1scasrng.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1scasrng.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evls1scasrng.x | ⊢ (𝜑 → 𝑋 ∈ 𝑅) |
Ref | Expression |
---|---|
evls1scasrng | ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1scasrng.c | . . . . . 6 ⊢ 𝐶 = (algSc‘𝑃) | |
2 | evls1scasrng.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘𝑆) | |
3 | evls1scasrng.s | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
4 | evls1scasrng.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑆) | |
5 | 4 | ressid 17290 | . . . . . . . . . . 11 ⊢ (𝑆 ∈ CRing → (𝑆 ↾s 𝐵) = 𝑆) |
6 | 5 | eqcomd 2741 | . . . . . . . . . 10 ⊢ (𝑆 ∈ CRing → 𝑆 = (𝑆 ↾s 𝐵)) |
7 | 3, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 = (𝑆 ↾s 𝐵)) |
8 | 7 | fveq2d 6911 | . . . . . . . 8 ⊢ (𝜑 → (Poly1‘𝑆) = (Poly1‘(𝑆 ↾s 𝐵))) |
9 | 2, 8 | eqtrid 2787 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Poly1‘(𝑆 ↾s 𝐵))) |
10 | 9 | fveq2d 6911 | . . . . . 6 ⊢ (𝜑 → (algSc‘𝑃) = (algSc‘(Poly1‘(𝑆 ↾s 𝐵)))) |
11 | 1, 10 | eqtrid 2787 | . . . . 5 ⊢ (𝜑 → 𝐶 = (algSc‘(Poly1‘(𝑆 ↾s 𝐵)))) |
12 | 11 | fveq1d 6909 | . . . 4 ⊢ (𝜑 → (𝐶‘𝑋) = ((algSc‘(Poly1‘(𝑆 ↾s 𝐵)))‘𝑋)) |
13 | 12 | fveq2d 6911 | . . 3 ⊢ (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶‘𝑋)) = ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆 ↾s 𝐵)))‘𝑋))) |
14 | eqid 2735 | . . . 4 ⊢ (𝑆 evalSub1 𝐵) = (𝑆 evalSub1 𝐵) | |
15 | eqid 2735 | . . . 4 ⊢ (Poly1‘(𝑆 ↾s 𝐵)) = (Poly1‘(𝑆 ↾s 𝐵)) | |
16 | eqid 2735 | . . . 4 ⊢ (𝑆 ↾s 𝐵) = (𝑆 ↾s 𝐵) | |
17 | eqid 2735 | . . . 4 ⊢ (algSc‘(Poly1‘(𝑆 ↾s 𝐵))) = (algSc‘(Poly1‘(𝑆 ↾s 𝐵))) | |
18 | crngring 20263 | . . . . 5 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
19 | 4 | subrgid 20590 | . . . . 5 ⊢ (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆)) |
20 | 3, 18, 19 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (SubRing‘𝑆)) |
21 | evls1scasrng.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
22 | 4 | subrgss 20589 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ 𝐵) |
24 | evls1scasrng.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑅) | |
25 | 23, 24 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
26 | 14, 15, 16, 4, 17, 3, 20, 25 | evls1sca 22343 | . . 3 ⊢ (𝜑 → ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆 ↾s 𝐵)))‘𝑋)) = (𝐵 × {𝑋})) |
27 | 13, 26 | eqtrd 2775 | . 2 ⊢ (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶‘𝑋)) = (𝐵 × {𝑋})) |
28 | evls1scasrng.o | . . . . 5 ⊢ 𝑂 = (eval1‘𝑆) | |
29 | 28, 4 | evl1fval1 22351 | . . . 4 ⊢ 𝑂 = (𝑆 evalSub1 𝐵) |
30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑂 = (𝑆 evalSub1 𝐵)) |
31 | 30 | fveq1d 6909 | . 2 ⊢ (𝜑 → (𝑂‘(𝐶‘𝑋)) = ((𝑆 evalSub1 𝐵)‘(𝐶‘𝑋))) |
32 | evls1scasrng.q | . . 3 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
33 | evls1scasrng.w | . . 3 ⊢ 𝑊 = (Poly1‘𝑈) | |
34 | evls1scasrng.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
35 | evls1scasrng.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
36 | 32, 33, 34, 4, 35, 3, 21, 24 | evls1sca 22343 | . 2 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
37 | 27, 31, 36 | 3eqtr4rd 2786 | 1 ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝑂‘(𝐶‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 {csn 4631 × cxp 5687 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 Ringcrg 20251 CRingccrg 20252 SubRingcsubrg 20586 algSccascl 21890 Poly1cpl1 22194 evalSub1 ces1 22333 eval1ce1 22334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-opsr 21951 df-evls 22116 df-evl 22117 df-psr1 22197 df-ply1 22199 df-evls1 22335 df-evl1 22336 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |