MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1scasrng Structured version   Visualization version   GIF version

Theorem evls1scasrng 22255
Description: The evaluation of a scalar of a subring yields the same result as evaluated as a scalar over the ring itself. (Contributed by AV, 13-Sep-2019.)
Hypotheses
Ref Expression
evls1scasrng.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1scasrng.o 𝑂 = (eval1𝑆)
evls1scasrng.w 𝑊 = (Poly1𝑈)
evls1scasrng.u 𝑈 = (𝑆s 𝑅)
evls1scasrng.p 𝑃 = (Poly1𝑆)
evls1scasrng.b 𝐵 = (Base‘𝑆)
evls1scasrng.a 𝐴 = (algSc‘𝑊)
evls1scasrng.c 𝐶 = (algSc‘𝑃)
evls1scasrng.s (𝜑𝑆 ∈ CRing)
evls1scasrng.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1scasrng.x (𝜑𝑋𝑅)
Assertion
Ref Expression
evls1scasrng (𝜑 → (𝑄‘(𝐴𝑋)) = (𝑂‘(𝐶𝑋)))

Proof of Theorem evls1scasrng
StepHypRef Expression
1 evls1scasrng.c . . . . . 6 𝐶 = (algSc‘𝑃)
2 evls1scasrng.p . . . . . . . 8 𝑃 = (Poly1𝑆)
3 evls1scasrng.s . . . . . . . . . 10 (𝜑𝑆 ∈ CRing)
4 evls1scasrng.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑆)
54ressid 17155 . . . . . . . . . . 11 (𝑆 ∈ CRing → (𝑆s 𝐵) = 𝑆)
65eqcomd 2737 . . . . . . . . . 10 (𝑆 ∈ CRing → 𝑆 = (𝑆s 𝐵))
73, 6syl 17 . . . . . . . . 9 (𝜑𝑆 = (𝑆s 𝐵))
87fveq2d 6826 . . . . . . . 8 (𝜑 → (Poly1𝑆) = (Poly1‘(𝑆s 𝐵)))
92, 8eqtrid 2778 . . . . . . 7 (𝜑𝑃 = (Poly1‘(𝑆s 𝐵)))
109fveq2d 6826 . . . . . 6 (𝜑 → (algSc‘𝑃) = (algSc‘(Poly1‘(𝑆s 𝐵))))
111, 10eqtrid 2778 . . . . 5 (𝜑𝐶 = (algSc‘(Poly1‘(𝑆s 𝐵))))
1211fveq1d 6824 . . . 4 (𝜑 → (𝐶𝑋) = ((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋))
1312fveq2d 6826 . . 3 (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)) = ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋)))
14 eqid 2731 . . . 4 (𝑆 evalSub1 𝐵) = (𝑆 evalSub1 𝐵)
15 eqid 2731 . . . 4 (Poly1‘(𝑆s 𝐵)) = (Poly1‘(𝑆s 𝐵))
16 eqid 2731 . . . 4 (𝑆s 𝐵) = (𝑆s 𝐵)
17 eqid 2731 . . . 4 (algSc‘(Poly1‘(𝑆s 𝐵))) = (algSc‘(Poly1‘(𝑆s 𝐵)))
18 crngring 20164 . . . . 5 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
194subrgid 20489 . . . . 5 (𝑆 ∈ Ring → 𝐵 ∈ (SubRing‘𝑆))
203, 18, 193syl 18 . . . 4 (𝜑𝐵 ∈ (SubRing‘𝑆))
21 evls1scasrng.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
224subrgss 20488 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
2321, 22syl 17 . . . . 5 (𝜑𝑅𝐵)
24 evls1scasrng.x . . . . 5 (𝜑𝑋𝑅)
2523, 24sseldd 3935 . . . 4 (𝜑𝑋𝐵)
2614, 15, 16, 4, 17, 3, 20, 25evls1sca 22239 . . 3 (𝜑 → ((𝑆 evalSub1 𝐵)‘((algSc‘(Poly1‘(𝑆s 𝐵)))‘𝑋)) = (𝐵 × {𝑋}))
2713, 26eqtrd 2766 . 2 (𝜑 → ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)) = (𝐵 × {𝑋}))
28 evls1scasrng.o . . . . 5 𝑂 = (eval1𝑆)
2928, 4evl1fval1 22247 . . . 4 𝑂 = (𝑆 evalSub1 𝐵)
3029a1i 11 . . 3 (𝜑𝑂 = (𝑆 evalSub1 𝐵))
3130fveq1d 6824 . 2 (𝜑 → (𝑂‘(𝐶𝑋)) = ((𝑆 evalSub1 𝐵)‘(𝐶𝑋)))
32 evls1scasrng.q . . 3 𝑄 = (𝑆 evalSub1 𝑅)
33 evls1scasrng.w . . 3 𝑊 = (Poly1𝑈)
34 evls1scasrng.u . . 3 𝑈 = (𝑆s 𝑅)
35 evls1scasrng.a . . 3 𝐴 = (algSc‘𝑊)
3632, 33, 34, 4, 35, 3, 21, 24evls1sca 22239 . 2 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝐵 × {𝑋}))
3727, 31, 363eqtr4rd 2777 1 (𝜑 → (𝑄‘(𝐴𝑋)) = (𝑂‘(𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3902  {csn 4576   × cxp 5614  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  Ringcrg 20152  CRingccrg 20153  SubRingcsubrg 20485  algSccascl 21790  Poly1cpl1 22090   evalSub1 ces1 22229  eval1ce1 22230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19126  df-cntz 19230  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-srg 20106  df-ring 20154  df-cring 20155  df-rhm 20391  df-subrng 20462  df-subrg 20486  df-lmod 20796  df-lss 20866  df-lsp 20906  df-assa 21791  df-asp 21792  df-ascl 21793  df-psr 21847  df-mvr 21848  df-mpl 21849  df-opsr 21851  df-evls 22010  df-evl 22011  df-psr1 22093  df-ply1 22095  df-evls1 22231  df-evl1 22232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator