![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symginv | Structured version Visualization version GIF version |
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symginv.2 | ⊢ 𝐵 = (Base‘𝐺) |
symginv.3 | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
symginv | ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symggrp.1 | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | symginv.2 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | elsymgbas2 18158 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) |
4 | 3 | ibi 259 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) |
5 | f1ocnv 6394 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹:𝐴–1-1-onto→𝐴) |
7 | cnvexg 7379 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹 ∈ V) | |
8 | 1, 2 | elsymgbas2 18158 | . . . . . 6 ⊢ (◡𝐹 ∈ V → (◡𝐹 ∈ 𝐵 ↔ ◡𝐹:𝐴–1-1-onto→𝐴)) |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (◡𝐹 ∈ 𝐵 ↔ ◡𝐹:𝐴–1-1-onto→𝐴)) |
10 | 6, 9 | mpbird 249 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹 ∈ 𝐵) |
11 | eqid 2825 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
12 | 1, 2, 11 | symgov 18167 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ ◡𝐹 ∈ 𝐵) → (𝐹(+g‘𝐺)◡𝐹) = (𝐹 ∘ ◡𝐹)) |
13 | 10, 12 | mpdan 678 | . . 3 ⊢ (𝐹 ∈ 𝐵 → (𝐹(+g‘𝐺)◡𝐹) = (𝐹 ∘ ◡𝐹)) |
14 | f1ococnv2 6408 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐴)) | |
15 | 4, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐴)) |
16 | 1, 2 | elbasfv 16290 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ V) |
17 | 1 | symgid 18178 | . . . 4 ⊢ (𝐴 ∈ V → ( I ↾ 𝐴) = (0g‘𝐺)) |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ( I ↾ 𝐴) = (0g‘𝐺)) |
19 | 13, 15, 18 | 3eqtrd 2865 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺)) |
20 | 1 | symggrp 18177 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 ∈ Grp) |
21 | 16, 20 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐺 ∈ Grp) |
22 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
23 | eqid 2825 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
24 | symginv.3 | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
25 | 2, 11, 23, 24 | grpinvid1 17831 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ◡𝐹 ∈ 𝐵) → ((𝑁‘𝐹) = ◡𝐹 ↔ (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺))) |
26 | 21, 22, 10, 25 | syl3anc 1494 | . 2 ⊢ (𝐹 ∈ 𝐵 → ((𝑁‘𝐹) = ◡𝐹 ↔ (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺))) |
27 | 19, 26 | mpbird 249 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1656 ∈ wcel 2164 Vcvv 3414 I cid 5251 ◡ccnv 5345 ↾ cres 5348 ∘ ccom 5350 –1-1-onto→wf1o 6126 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 +gcplusg 16312 0gc0g 16460 Grpcgrp 17783 invgcminusg 17784 SymGrpcsymg 18154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-plusg 16325 df-tset 16331 df-0g 16462 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-symg 18155 |
This theorem is referenced by: symgsssg 18244 symgfisg 18245 symgtrinv 18249 psgninv 20294 zrhpsgninv 20297 evpmodpmf1o 20309 mdetleib2 20769 symgtgp 22282 symgfcoeu 30386 madjusmdetlem3 30436 madjusmdetlem4 30437 |
Copyright terms: Public domain | W3C validator |