MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symginv Structured version   Visualization version   GIF version

Theorem symginv 19400
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
symginv.2 𝐵 = (Base‘𝐺)
symginv.3 𝑁 = (invg𝐺)
Assertion
Ref Expression
symginv (𝐹𝐵 → (𝑁𝐹) = 𝐹)

Proof of Theorem symginv
StepHypRef Expression
1 symggrp.1 . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
2 symginv.2 . . . . . . . 8 𝐵 = (Base‘𝐺)
31, 2elsymgbas2 19370 . . . . . . 7 (𝐹𝐵 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
43ibi 266 . . . . . 6 (𝐹𝐵𝐹:𝐴1-1-onto𝐴)
5 f1ocnv 6855 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
64, 5syl 17 . . . . 5 (𝐹𝐵𝐹:𝐴1-1-onto𝐴)
7 cnvexg 7937 . . . . . 6 (𝐹𝐵𝐹 ∈ V)
81, 2elsymgbas2 19370 . . . . . 6 (𝐹 ∈ V → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
97, 8syl 17 . . . . 5 (𝐹𝐵 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
106, 9mpbird 256 . . . 4 (𝐹𝐵𝐹𝐵)
11 eqid 2726 . . . . 5 (+g𝐺) = (+g𝐺)
121, 2, 11symgov 19381 . . . 4 ((𝐹𝐵𝐹𝐵) → (𝐹(+g𝐺)𝐹) = (𝐹𝐹))
1310, 12mpdan 685 . . 3 (𝐹𝐵 → (𝐹(+g𝐺)𝐹) = (𝐹𝐹))
14 f1ococnv2 6870 . . . 4 (𝐹:𝐴1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
154, 14syl 17 . . 3 (𝐹𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
161, 2elbasfv 17219 . . . 4 (𝐹𝐵𝐴 ∈ V)
171symgid 19399 . . . 4 (𝐴 ∈ V → ( I ↾ 𝐴) = (0g𝐺))
1816, 17syl 17 . . 3 (𝐹𝐵 → ( I ↾ 𝐴) = (0g𝐺))
1913, 15, 183eqtrd 2770 . 2 (𝐹𝐵 → (𝐹(+g𝐺)𝐹) = (0g𝐺))
201symggrp 19398 . . . 4 (𝐴 ∈ V → 𝐺 ∈ Grp)
2116, 20syl 17 . . 3 (𝐹𝐵𝐺 ∈ Grp)
22 id 22 . . 3 (𝐹𝐵𝐹𝐵)
23 eqid 2726 . . . 4 (0g𝐺) = (0g𝐺)
24 symginv.3 . . . 4 𝑁 = (invg𝐺)
252, 11, 23, 24grpinvid1 18986 . . 3 ((𝐺 ∈ Grp ∧ 𝐹𝐵𝐹𝐵) → ((𝑁𝐹) = 𝐹 ↔ (𝐹(+g𝐺)𝐹) = (0g𝐺)))
2621, 22, 10, 25syl3anc 1368 . 2 (𝐹𝐵 → ((𝑁𝐹) = 𝐹 ↔ (𝐹(+g𝐺)𝐹) = (0g𝐺)))
2719, 26mpbird 256 1 (𝐹𝐵 → (𝑁𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  Vcvv 3462   I cid 5579  ccnv 5681  cres 5684  ccom 5686  1-1-ontowf1o 6553  cfv 6554  (class class class)co 7424  Basecbs 17213  +gcplusg 17266  0gc0g 17454  Grpcgrp 18928  invgcminusg 18929  SymGrpcsymg 19364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-tset 17285  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-efmnd 18859  df-grp 18931  df-minusg 18932  df-symg 19365
This theorem is referenced by:  symgsssg  19465  symgfisg  19466  symgtrinv  19470  psgninv  21578  zrhpsgninv  21581  evpmodpmf1o  21592  mdetleib2  22581  symgtgp  24101  symgfcoeu  32960  symgsubg  32965  cycpmconjv  33020  madjusmdetlem3  33644  madjusmdetlem4  33645
  Copyright terms: Public domain W3C validator