MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symginv Structured version   Visualization version   GIF version

Theorem symginv 19351
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
symginv.2 𝐵 = (Base‘𝐺)
symginv.3 𝑁 = (invg𝐺)
Assertion
Ref Expression
symginv (𝐹𝐵 → (𝑁𝐹) = 𝐹)

Proof of Theorem symginv
StepHypRef Expression
1 symggrp.1 . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
2 symginv.2 . . . . . . . 8 𝐵 = (Base‘𝐺)
31, 2elsymgbas2 19321 . . . . . . 7 (𝐹𝐵 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
43ibi 267 . . . . . 6 (𝐹𝐵𝐹:𝐴1-1-onto𝐴)
5 f1ocnv 6846 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
64, 5syl 17 . . . . 5 (𝐹𝐵𝐹:𝐴1-1-onto𝐴)
7 cnvexg 7927 . . . . . 6 (𝐹𝐵𝐹 ∈ V)
81, 2elsymgbas2 19321 . . . . . 6 (𝐹 ∈ V → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
97, 8syl 17 . . . . 5 (𝐹𝐵 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
106, 9mpbird 257 . . . 4 (𝐹𝐵𝐹𝐵)
11 eqid 2728 . . . . 5 (+g𝐺) = (+g𝐺)
121, 2, 11symgov 19332 . . . 4 ((𝐹𝐵𝐹𝐵) → (𝐹(+g𝐺)𝐹) = (𝐹𝐹))
1310, 12mpdan 686 . . 3 (𝐹𝐵 → (𝐹(+g𝐺)𝐹) = (𝐹𝐹))
14 f1ococnv2 6861 . . . 4 (𝐹:𝐴1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
154, 14syl 17 . . 3 (𝐹𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
161, 2elbasfv 17180 . . . 4 (𝐹𝐵𝐴 ∈ V)
171symgid 19350 . . . 4 (𝐴 ∈ V → ( I ↾ 𝐴) = (0g𝐺))
1816, 17syl 17 . . 3 (𝐹𝐵 → ( I ↾ 𝐴) = (0g𝐺))
1913, 15, 183eqtrd 2772 . 2 (𝐹𝐵 → (𝐹(+g𝐺)𝐹) = (0g𝐺))
201symggrp 19349 . . . 4 (𝐴 ∈ V → 𝐺 ∈ Grp)
2116, 20syl 17 . . 3 (𝐹𝐵𝐺 ∈ Grp)
22 id 22 . . 3 (𝐹𝐵𝐹𝐵)
23 eqid 2728 . . . 4 (0g𝐺) = (0g𝐺)
24 symginv.3 . . . 4 𝑁 = (invg𝐺)
252, 11, 23, 24grpinvid1 18942 . . 3 ((𝐺 ∈ Grp ∧ 𝐹𝐵𝐹𝐵) → ((𝑁𝐹) = 𝐹 ↔ (𝐹(+g𝐺)𝐹) = (0g𝐺)))
2621, 22, 10, 25syl3anc 1369 . 2 (𝐹𝐵 → ((𝑁𝐹) = 𝐹 ↔ (𝐹(+g𝐺)𝐹) = (0g𝐺)))
2719, 26mpbird 257 1 (𝐹𝐵 → (𝑁𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  Vcvv 3470   I cid 5570  ccnv 5672  cres 5675  ccom 5677  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7415  Basecbs 17174  +gcplusg 17227  0gc0g 17415  Grpcgrp 18884  invgcminusg 18885  SymGrpcsymg 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-tset 17246  df-0g 17417  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-efmnd 18815  df-grp 18887  df-minusg 18888  df-symg 19316
This theorem is referenced by:  symgsssg  19416  symgfisg  19417  symgtrinv  19421  psgninv  21508  zrhpsgninv  21511  evpmodpmf1o  21522  mdetleib2  22484  symgtgp  24004  symgfcoeu  32800  symgsubg  32805  cycpmconjv  32858  madjusmdetlem3  33425  madjusmdetlem4  33426
  Copyright terms: Public domain W3C validator