| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symginv | Structured version Visualization version GIF version | ||
| Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symginv.2 | ⊢ 𝐵 = (Base‘𝐺) |
| symginv.3 | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| symginv | ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | symginv.2 | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | elsymgbas2 19289 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) |
| 4 | 3 | ibi 267 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) |
| 5 | f1ocnv 6782 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐴) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹:𝐴–1-1-onto→𝐴) |
| 7 | cnvexg 7862 | . . . . . 6 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹 ∈ V) | |
| 8 | 1, 2 | elsymgbas2 19289 | . . . . . 6 ⊢ (◡𝐹 ∈ V → (◡𝐹 ∈ 𝐵 ↔ ◡𝐹:𝐴–1-1-onto→𝐴)) |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (◡𝐹 ∈ 𝐵 ↔ ◡𝐹:𝐴–1-1-onto→𝐴)) |
| 10 | 6, 9 | mpbird 257 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → ◡𝐹 ∈ 𝐵) |
| 11 | eqid 2733 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 12 | 1, 2, 11 | symgov 19300 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ ◡𝐹 ∈ 𝐵) → (𝐹(+g‘𝐺)◡𝐹) = (𝐹 ∘ ◡𝐹)) |
| 13 | 10, 12 | mpdan 687 | . . 3 ⊢ (𝐹 ∈ 𝐵 → (𝐹(+g‘𝐺)◡𝐹) = (𝐹 ∘ ◡𝐹)) |
| 14 | f1ococnv2 6797 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐴 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐴)) | |
| 15 | 4, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡𝐹) = ( I ↾ 𝐴)) |
| 16 | 1, 2 | elbasfv 17130 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ V) |
| 17 | 1 | symgid 19317 | . . . 4 ⊢ (𝐴 ∈ V → ( I ↾ 𝐴) = (0g‘𝐺)) |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ( I ↾ 𝐴) = (0g‘𝐺)) |
| 19 | 13, 15, 18 | 3eqtrd 2772 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺)) |
| 20 | 1 | symggrp 19316 | . . . 4 ⊢ (𝐴 ∈ V → 𝐺 ∈ Grp) |
| 21 | 16, 20 | syl 17 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐺 ∈ Grp) |
| 22 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
| 23 | eqid 2733 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 24 | symginv.3 | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 25 | 2, 11, 23, 24 | grpinvid1 18908 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ◡𝐹 ∈ 𝐵) → ((𝑁‘𝐹) = ◡𝐹 ↔ (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺))) |
| 26 | 21, 22, 10, 25 | syl3anc 1373 | . 2 ⊢ (𝐹 ∈ 𝐵 → ((𝑁‘𝐹) = ◡𝐹 ↔ (𝐹(+g‘𝐺)◡𝐹) = (0g‘𝐺))) |
| 27 | 19, 26 | mpbird 257 | 1 ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 I cid 5515 ◡ccnv 5620 ↾ cres 5623 ∘ ccom 5625 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 0gc0g 17347 Grpcgrp 18850 invgcminusg 18851 SymGrpcsymg 19285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-tset 17184 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-efmnd 18781 df-grp 18853 df-minusg 18854 df-symg 19286 |
| This theorem is referenced by: symgsssg 19383 symgfisg 19384 symgtrinv 19388 psgninv 21523 zrhpsgninv 21526 evpmodpmf1o 21537 mdetleib2 22506 symgtgp 24024 symgfcoeu 33060 symgsubg 33065 cycpmconjv 33120 madjusmdetlem3 33865 madjusmdetlem4 33866 |
| Copyright terms: Public domain | W3C validator |