MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symginv Structured version   Visualization version   GIF version

Theorem symginv 18509
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
symggrp.1 𝐺 = (SymGrp‘𝐴)
symginv.2 𝐵 = (Base‘𝐺)
symginv.3 𝑁 = (invg𝐺)
Assertion
Ref Expression
symginv (𝐹𝐵 → (𝑁𝐹) = 𝐹)

Proof of Theorem symginv
StepHypRef Expression
1 symggrp.1 . . . . . . . 8 𝐺 = (SymGrp‘𝐴)
2 symginv.2 . . . . . . . 8 𝐵 = (Base‘𝐺)
31, 2elsymgbas2 18480 . . . . . . 7 (𝐹𝐵 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
43ibi 270 . . . . . 6 (𝐹𝐵𝐹:𝐴1-1-onto𝐴)
5 f1ocnv 6600 . . . . . 6 (𝐹:𝐴1-1-onto𝐴𝐹:𝐴1-1-onto𝐴)
64, 5syl 17 . . . . 5 (𝐹𝐵𝐹:𝐴1-1-onto𝐴)
7 cnvexg 7604 . . . . . 6 (𝐹𝐵𝐹 ∈ V)
81, 2elsymgbas2 18480 . . . . . 6 (𝐹 ∈ V → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
97, 8syl 17 . . . . 5 (𝐹𝐵 → (𝐹𝐵𝐹:𝐴1-1-onto𝐴))
106, 9mpbird 260 . . . 4 (𝐹𝐵𝐹𝐵)
11 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
121, 2, 11symgov 18491 . . . 4 ((𝐹𝐵𝐹𝐵) → (𝐹(+g𝐺)𝐹) = (𝐹𝐹))
1310, 12mpdan 686 . . 3 (𝐹𝐵 → (𝐹(+g𝐺)𝐹) = (𝐹𝐹))
14 f1ococnv2 6614 . . . 4 (𝐹:𝐴1-1-onto𝐴 → (𝐹𝐹) = ( I ↾ 𝐴))
154, 14syl 17 . . 3 (𝐹𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
161, 2elbasfv 16523 . . . 4 (𝐹𝐵𝐴 ∈ V)
171symgid 18508 . . . 4 (𝐴 ∈ V → ( I ↾ 𝐴) = (0g𝐺))
1816, 17syl 17 . . 3 (𝐹𝐵 → ( I ↾ 𝐴) = (0g𝐺))
1913, 15, 183eqtrd 2860 . 2 (𝐹𝐵 → (𝐹(+g𝐺)𝐹) = (0g𝐺))
201symggrp 18507 . . . 4 (𝐴 ∈ V → 𝐺 ∈ Grp)
2116, 20syl 17 . . 3 (𝐹𝐵𝐺 ∈ Grp)
22 id 22 . . 3 (𝐹𝐵𝐹𝐵)
23 eqid 2821 . . . 4 (0g𝐺) = (0g𝐺)
24 symginv.3 . . . 4 𝑁 = (invg𝐺)
252, 11, 23, 24grpinvid1 18133 . . 3 ((𝐺 ∈ Grp ∧ 𝐹𝐵𝐹𝐵) → ((𝑁𝐹) = 𝐹 ↔ (𝐹(+g𝐺)𝐹) = (0g𝐺)))
2621, 22, 10, 25syl3anc 1368 . 2 (𝐹𝐵 → ((𝑁𝐹) = 𝐹 ↔ (𝐹(+g𝐺)𝐹) = (0g𝐺)))
2719, 26mpbird 260 1 (𝐹𝐵 → (𝑁𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2115  Vcvv 3471   I cid 5432  ccnv 5527  cres 5530  ccom 5532  1-1-ontowf1o 6327  cfv 6328  (class class class)co 7130  Basecbs 16462  +gcplusg 16544  0gc0g 16692  Grpcgrp 18082  invgcminusg 18083  SymGrpcsymg 18474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-tset 16563  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-efmnd 18013  df-grp 18085  df-minusg 18086  df-symg 18475
This theorem is referenced by:  symgsssg  18574  symgfisg  18575  symgtrinv  18579  psgninv  20702  zrhpsgninv  20705  evpmodpmf1o  20716  mdetleib2  21173  symgtgp  22690  symgfcoeu  30734  symgsubg  30739  cycpmconjv  30792  madjusmdetlem3  31105  madjusmdetlem4  31106
  Copyright terms: Public domain W3C validator