MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfb Structured version   Visualization version   GIF version

Theorem pmtrfb 19483
Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfb (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))

Proof of Theorem pmtrfb
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
3 eqid 2737 . . . . 5 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19476 . . . 4 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
5 simpl1 1192 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → 𝐷 ∈ V)
64, 5syl 17 . . 3 (𝐹𝑅𝐷 ∈ V)
71, 2pmtrff1o 19481 . . 3 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
8 simpl3 1194 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → dom (𝐹 ∖ I ) ≈ 2o)
94, 8syl 17 . . 3 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
106, 7, 93jca 1129 . 2 (𝐹𝑅 → (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
11 simp2 1138 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹:𝐷1-1-onto𝐷)
12 difss 4136 . . . . . . . 8 (𝐹 ∖ I ) ⊆ 𝐹
13 dmss 5913 . . . . . . . 8 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
1412, 13ax-mp 5 . . . . . . 7 dom (𝐹 ∖ I ) ⊆ dom 𝐹
15 f1odm 6852 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷 → dom 𝐹 = 𝐷)
1614, 15sseqtrid 4026 . . . . . 6 (𝐹:𝐷1-1-onto𝐷 → dom (𝐹 ∖ I ) ⊆ 𝐷)
171, 2pmtrrn 19475 . . . . . 6 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
1816, 17syl3an2 1165 . . . . 5 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
191, 2pmtrff1o 19481 . . . . 5 ((𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
2018, 19syl 17 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
21 simp3 1139 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom (𝐹 ∖ I ) ≈ 2o)
221pmtrmvd 19474 . . . . 5 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
2316, 22syl3an2 1165 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
24 f1otrspeq 19465 . . . 4 (((𝐹:𝐷1-1-onto𝐷 ∧ (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2511, 20, 21, 23, 24syl22anc 839 . . 3 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2625, 18eqeltrd 2841 . 2 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹𝑅)
2710, 26impbii 209 1 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  cdif 3948  wss 3951   class class class wbr 5143   I cid 5577  dom cdm 5685  ran crn 5686  1-1-ontowf1o 6560  cfv 6561  2oc2o 8500  cen 8982  pmTrspcpmtr 19459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pmtr 19460
This theorem is referenced by:  pmtrfconj  19484  symggen  19488  pmtrdifellem1  19494  pmtrdifellem2  19495  psgnunilem1  19511
  Copyright terms: Public domain W3C validator