MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfb Structured version   Visualization version   GIF version

Theorem pmtrfb 19375
Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfb (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))

Proof of Theorem pmtrfb
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
3 eqid 2731 . . . . 5 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19368 . . . 4 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
5 simpl1 1192 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → 𝐷 ∈ V)
64, 5syl 17 . . 3 (𝐹𝑅𝐷 ∈ V)
71, 2pmtrff1o 19373 . . 3 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
8 simpl3 1194 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → dom (𝐹 ∖ I ) ≈ 2o)
94, 8syl 17 . . 3 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
106, 7, 93jca 1128 . 2 (𝐹𝑅 → (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
11 simp2 1137 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹:𝐷1-1-onto𝐷)
12 difss 4086 . . . . . . . 8 (𝐹 ∖ I ) ⊆ 𝐹
13 dmss 5842 . . . . . . . 8 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
1412, 13ax-mp 5 . . . . . . 7 dom (𝐹 ∖ I ) ⊆ dom 𝐹
15 f1odm 6767 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷 → dom 𝐹 = 𝐷)
1614, 15sseqtrid 3977 . . . . . 6 (𝐹:𝐷1-1-onto𝐷 → dom (𝐹 ∖ I ) ⊆ 𝐷)
171, 2pmtrrn 19367 . . . . . 6 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
1816, 17syl3an2 1164 . . . . 5 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
191, 2pmtrff1o 19373 . . . . 5 ((𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
2018, 19syl 17 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
21 simp3 1138 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom (𝐹 ∖ I ) ≈ 2o)
221pmtrmvd 19366 . . . . 5 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
2316, 22syl3an2 1164 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
24 f1otrspeq 19357 . . . 4 (((𝐹:𝐷1-1-onto𝐷 ∧ (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2511, 20, 21, 23, 24syl22anc 838 . . 3 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2625, 18eqeltrd 2831 . 2 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹𝑅)
2710, 26impbii 209 1 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  wss 3902   class class class wbr 5091   I cid 5510  dom cdm 5616  ran crn 5617  1-1-ontowf1o 6480  cfv 6481  2oc2o 8379  cen 8866  pmTrspcpmtr 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pmtr 19352
This theorem is referenced by:  pmtrfconj  19376  symggen  19380  pmtrdifellem1  19386  pmtrdifellem2  19387  psgnunilem1  19403
  Copyright terms: Public domain W3C validator