MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfb Structured version   Visualization version   GIF version

Theorem pmtrfb 19507
Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfb (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))

Proof of Theorem pmtrfb
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
3 eqid 2740 . . . . 5 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19500 . . . 4 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
5 simpl1 1191 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → 𝐷 ∈ V)
64, 5syl 17 . . 3 (𝐹𝑅𝐷 ∈ V)
71, 2pmtrff1o 19505 . . 3 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
8 simpl3 1193 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → dom (𝐹 ∖ I ) ≈ 2o)
94, 8syl 17 . . 3 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
106, 7, 93jca 1128 . 2 (𝐹𝑅 → (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
11 simp2 1137 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹:𝐷1-1-onto𝐷)
12 difss 4159 . . . . . . . 8 (𝐹 ∖ I ) ⊆ 𝐹
13 dmss 5927 . . . . . . . 8 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
1412, 13ax-mp 5 . . . . . . 7 dom (𝐹 ∖ I ) ⊆ dom 𝐹
15 f1odm 6866 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷 → dom 𝐹 = 𝐷)
1614, 15sseqtrid 4061 . . . . . 6 (𝐹:𝐷1-1-onto𝐷 → dom (𝐹 ∖ I ) ⊆ 𝐷)
171, 2pmtrrn 19499 . . . . . 6 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
1816, 17syl3an2 1164 . . . . 5 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
191, 2pmtrff1o 19505 . . . . 5 ((𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
2018, 19syl 17 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
21 simp3 1138 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom (𝐹 ∖ I ) ≈ 2o)
221pmtrmvd 19498 . . . . 5 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
2316, 22syl3an2 1164 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
24 f1otrspeq 19489 . . . 4 (((𝐹:𝐷1-1-onto𝐷 ∧ (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2511, 20, 21, 23, 24syl22anc 838 . . 3 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2625, 18eqeltrd 2844 . 2 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹𝑅)
2710, 26impbii 209 1 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976   class class class wbr 5166   I cid 5592  dom cdm 5700  ran crn 5701  1-1-ontowf1o 6572  cfv 6573  2oc2o 8516  cen 9000  pmTrspcpmtr 19483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pmtr 19484
This theorem is referenced by:  pmtrfconj  19508  symggen  19512  pmtrdifellem1  19518  pmtrdifellem2  19519  psgnunilem1  19535
  Copyright terms: Public domain W3C validator