MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfb Structured version   Visualization version   GIF version

Theorem pmtrfb 19362
Description: An intrinsic characterization of the transposition permutations. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
Assertion
Ref Expression
pmtrfb (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))

Proof of Theorem pmtrfb
StepHypRef Expression
1 pmtrrn.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
2 pmtrrn.r . . . . 5 𝑅 = ran 𝑇
3 eqid 2729 . . . . 5 dom (𝐹 ∖ I ) = dom (𝐹 ∖ I )
41, 2, 3pmtrfrn 19355 . . . 4 (𝐹𝑅 → ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))))
5 simpl1 1192 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → 𝐷 ∈ V)
64, 5syl 17 . . 3 (𝐹𝑅𝐷 ∈ V)
71, 2pmtrff1o 19360 . . 3 (𝐹𝑅𝐹:𝐷1-1-onto𝐷)
8 simpl3 1194 . . . 4 (((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) ∧ 𝐹 = (𝑇‘dom (𝐹 ∖ I ))) → dom (𝐹 ∖ I ) ≈ 2o)
94, 8syl 17 . . 3 (𝐹𝑅 → dom (𝐹 ∖ I ) ≈ 2o)
106, 7, 93jca 1128 . 2 (𝐹𝑅 → (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
11 simp2 1137 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹:𝐷1-1-onto𝐷)
12 difss 4089 . . . . . . . 8 (𝐹 ∖ I ) ⊆ 𝐹
13 dmss 5849 . . . . . . . 8 ((𝐹 ∖ I ) ⊆ 𝐹 → dom (𝐹 ∖ I ) ⊆ dom 𝐹)
1412, 13ax-mp 5 . . . . . . 7 dom (𝐹 ∖ I ) ⊆ dom 𝐹
15 f1odm 6772 . . . . . . 7 (𝐹:𝐷1-1-onto𝐷 → dom 𝐹 = 𝐷)
1614, 15sseqtrid 3980 . . . . . 6 (𝐹:𝐷1-1-onto𝐷 → dom (𝐹 ∖ I ) ⊆ 𝐷)
171, 2pmtrrn 19354 . . . . . 6 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
1816, 17syl3an2 1164 . . . . 5 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅)
191, 2pmtrff1o 19360 . . . . 5 ((𝑇‘dom (𝐹 ∖ I )) ∈ 𝑅 → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
2018, 19syl 17 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷)
21 simp3 1138 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom (𝐹 ∖ I ) ≈ 2o)
221pmtrmvd 19353 . . . . 5 ((𝐷 ∈ V ∧ dom (𝐹 ∖ I ) ⊆ 𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
2316, 22syl3an2 1164 . . . 4 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))
24 f1otrspeq 19344 . . . 4 (((𝐹:𝐷1-1-onto𝐷 ∧ (𝑇‘dom (𝐹 ∖ I )):𝐷1-1-onto𝐷) ∧ (dom (𝐹 ∖ I ) ≈ 2o ∧ dom ((𝑇‘dom (𝐹 ∖ I )) ∖ I ) = dom (𝐹 ∖ I ))) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2511, 20, 21, 23, 24syl22anc 838 . . 3 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹 = (𝑇‘dom (𝐹 ∖ I )))
2625, 18eqeltrd 2828 . 2 ((𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o) → 𝐹𝑅)
2710, 26impbii 209 1 (𝐹𝑅 ↔ (𝐷 ∈ V ∧ 𝐹:𝐷1-1-onto𝐷 ∧ dom (𝐹 ∖ I ) ≈ 2o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  wss 3905   class class class wbr 5095   I cid 5517  dom cdm 5623  ran crn 5624  1-1-ontowf1o 6485  cfv 6486  2oc2o 8389  cen 8876  pmTrspcpmtr 19338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pmtr 19339
This theorem is referenced by:  pmtrfconj  19363  symggen  19367  pmtrdifellem1  19373  pmtrdifellem2  19374  psgnunilem1  19390
  Copyright terms: Public domain W3C validator