MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggen2 Structured version   Visualization version   GIF version

Theorem symggen2 19452
Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
symgtrf.t 𝑇 = ran (pmTrsp‘𝐷)
symgtrf.g 𝐺 = (SymGrp‘𝐷)
symgtrf.b 𝐵 = (Base‘𝐺)
symggen.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
Assertion
Ref Expression
symggen2 (𝐷 ∈ Fin → (𝐾𝑇) = 𝐵)

Proof of Theorem symggen2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 symgtrf.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
2 symgtrf.g . . 3 𝐺 = (SymGrp‘𝐷)
3 symgtrf.b . . 3 𝐵 = (Base‘𝐺)
4 symggen.k . . 3 𝐾 = (mrCls‘(SubMnd‘𝐺))
51, 2, 3, 4symggen 19451 . 2 (𝐷 ∈ Fin → (𝐾𝑇) = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6 difss 4111 . . . . . . 7 (𝑥 ∖ I ) ⊆ 𝑥
7 dmss 5882 . . . . . . 7 ((𝑥 ∖ I ) ⊆ 𝑥 → dom (𝑥 ∖ I ) ⊆ dom 𝑥)
86, 7ax-mp 5 . . . . . 6 dom (𝑥 ∖ I ) ⊆ dom 𝑥
92, 3symgbasf1o 19356 . . . . . . 7 (𝑥𝐵𝑥:𝐷1-1-onto𝐷)
10 f1odm 6822 . . . . . . 7 (𝑥:𝐷1-1-onto𝐷 → dom 𝑥 = 𝐷)
119, 10syl 17 . . . . . 6 (𝑥𝐵 → dom 𝑥 = 𝐷)
128, 11sseqtrid 4001 . . . . 5 (𝑥𝐵 → dom (𝑥 ∖ I ) ⊆ 𝐷)
13 ssfi 9187 . . . . 5 ((𝐷 ∈ Fin ∧ dom (𝑥 ∖ I ) ⊆ 𝐷) → dom (𝑥 ∖ I ) ∈ Fin)
1412, 13sylan2 593 . . . 4 ((𝐷 ∈ Fin ∧ 𝑥𝐵) → dom (𝑥 ∖ I ) ∈ Fin)
1514ralrimiva 3132 . . 3 (𝐷 ∈ Fin → ∀𝑥𝐵 dom (𝑥 ∖ I ) ∈ Fin)
16 rabid2 3449 . . 3 (𝐵 = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥𝐵 dom (𝑥 ∖ I ) ∈ Fin)
1715, 16sylibr 234 . 2 (𝐷 ∈ Fin → 𝐵 = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
185, 17eqtr4d 2773 1 (𝐷 ∈ Fin → (𝐾𝑇) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cdif 3923  wss 3926   I cid 5547  dom cdm 5654  ran crn 5655  1-1-ontowf1o 6530  cfv 6531  Fincfn 8959  Basecbs 17228  mrClscmrc 17595  SubMndcsubmnd 18760  SymGrpcsymg 19350  pmTrspcpmtr 19422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-tset 17290  df-0g 17455  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-efmnd 18847  df-grp 18919  df-minusg 18920  df-subg 19106  df-symg 19351  df-pmtr 19423
This theorem is referenced by:  psgnfitr  19498  mdetunilem7  22556
  Copyright terms: Public domain W3C validator