| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symggen2 | Structured version Visualization version GIF version | ||
| Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| symgtrf.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
| symgtrf.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| symgtrf.b | ⊢ 𝐵 = (Base‘𝐺) |
| symggen.k | ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) |
| Ref | Expression |
|---|---|
| symggen2 | ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrf.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
| 2 | symgtrf.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 3 | symgtrf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | symggen.k | . . 3 ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) | |
| 5 | 1, 2, 3, 4 | symggen 19382 | . 2 ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
| 6 | difss 4083 | . . . . . . 7 ⊢ (𝑥 ∖ I ) ⊆ 𝑥 | |
| 7 | dmss 5841 | . . . . . . 7 ⊢ ((𝑥 ∖ I ) ⊆ 𝑥 → dom (𝑥 ∖ I ) ⊆ dom 𝑥) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ dom (𝑥 ∖ I ) ⊆ dom 𝑥 |
| 9 | 2, 3 | symgbasf1o 19287 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → 𝑥:𝐷–1-1-onto→𝐷) |
| 10 | f1odm 6767 | . . . . . . 7 ⊢ (𝑥:𝐷–1-1-onto→𝐷 → dom 𝑥 = 𝐷) | |
| 11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → dom 𝑥 = 𝐷) |
| 12 | 8, 11 | sseqtrid 3972 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → dom (𝑥 ∖ I ) ⊆ 𝐷) |
| 13 | ssfi 9082 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ dom (𝑥 ∖ I ) ⊆ 𝐷) → dom (𝑥 ∖ I ) ∈ Fin) | |
| 14 | 12, 13 | sylan2 593 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑥 ∈ 𝐵) → dom (𝑥 ∖ I ) ∈ Fin) |
| 15 | 14 | ralrimiva 3124 | . . 3 ⊢ (𝐷 ∈ Fin → ∀𝑥 ∈ 𝐵 dom (𝑥 ∖ I ) ∈ Fin) |
| 16 | rabid2 3428 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥 ∈ 𝐵 dom (𝑥 ∖ I ) ∈ Fin) | |
| 17 | 15, 16 | sylibr 234 | . 2 ⊢ (𝐷 ∈ Fin → 𝐵 = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
| 18 | 5, 17 | eqtr4d 2769 | 1 ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 I cid 5508 dom cdm 5614 ran crn 5615 –1-1-onto→wf1o 6480 ‘cfv 6481 Fincfn 8869 Basecbs 17120 mrClscmrc 17485 SubMndcsubmnd 18690 SymGrpcsymg 19281 pmTrspcpmtr 19353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-subg 19036 df-symg 19282 df-pmtr 19354 |
| This theorem is referenced by: psgnfitr 19429 mdetunilem7 22533 |
| Copyright terms: Public domain | W3C validator |