Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symggen2 | Structured version Visualization version GIF version |
Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
Ref | Expression |
---|---|
symgtrf.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
symgtrf.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
symgtrf.b | ⊢ 𝐵 = (Base‘𝐺) |
symggen.k | ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) |
Ref | Expression |
---|---|
symggen2 | ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgtrf.t | . . 3 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
2 | symgtrf.g | . . 3 ⊢ 𝐺 = (SymGrp‘𝐷) | |
3 | symgtrf.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
4 | symggen.k | . . 3 ⊢ 𝐾 = (mrCls‘(SubMnd‘𝐺)) | |
5 | 1, 2, 3, 4 | symggen 18862 | . 2 ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
6 | difss 4046 | . . . . . . 7 ⊢ (𝑥 ∖ I ) ⊆ 𝑥 | |
7 | dmss 5771 | . . . . . . 7 ⊢ ((𝑥 ∖ I ) ⊆ 𝑥 → dom (𝑥 ∖ I ) ⊆ dom 𝑥) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ dom (𝑥 ∖ I ) ⊆ dom 𝑥 |
9 | 2, 3 | symgbasf1o 18767 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐵 → 𝑥:𝐷–1-1-onto→𝐷) |
10 | f1odm 6665 | . . . . . . 7 ⊢ (𝑥:𝐷–1-1-onto→𝐷 → dom 𝑥 = 𝐷) | |
11 | 9, 10 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → dom 𝑥 = 𝐷) |
12 | 8, 11 | sseqtrid 3953 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → dom (𝑥 ∖ I ) ⊆ 𝐷) |
13 | ssfi 8851 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ dom (𝑥 ∖ I ) ⊆ 𝐷) → dom (𝑥 ∖ I ) ∈ Fin) | |
14 | 12, 13 | sylan2 596 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝑥 ∈ 𝐵) → dom (𝑥 ∖ I ) ∈ Fin) |
15 | 14 | ralrimiva 3105 | . . 3 ⊢ (𝐷 ∈ Fin → ∀𝑥 ∈ 𝐵 dom (𝑥 ∖ I ) ∈ Fin) |
16 | rabid2 3293 | . . 3 ⊢ (𝐵 = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥 ∈ 𝐵 dom (𝑥 ∖ I ) ∈ Fin) | |
17 | 15, 16 | sylibr 237 | . 2 ⊢ (𝐷 ∈ Fin → 𝐵 = {𝑥 ∈ 𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin}) |
18 | 5, 17 | eqtr4d 2780 | 1 ⊢ (𝐷 ∈ Fin → (𝐾‘𝑇) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 ∖ cdif 3863 ⊆ wss 3866 I cid 5454 dom cdm 5551 ran crn 5552 –1-1-onto→wf1o 6379 ‘cfv 6380 Fincfn 8626 Basecbs 16760 mrClscmrc 17086 SubMndcsubmnd 18217 SymGrpcsymg 18759 pmTrspcpmtr 18833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-tset 16821 df-0g 16946 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-efmnd 18296 df-grp 18368 df-minusg 18369 df-subg 18540 df-symg 18760 df-pmtr 18834 |
This theorem is referenced by: psgnfitr 18909 mdetunilem7 21515 |
Copyright terms: Public domain | W3C validator |