| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eucalgcvga | Structured version Visualization version GIF version | ||
| Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
| eucalg.2 | ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) |
| eucalgcvga.3 | ⊢ 𝑁 = (2nd ‘𝐴) |
| Ref | Expression |
|---|---|
| eucalgcvga | ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eucalgcvga.3 | . . . . . . 7 ⊢ 𝑁 = (2nd ‘𝐴) | |
| 2 | xp2nd 8010 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘𝐴) ∈ ℕ0) | |
| 3 | 1, 2 | eqeltrid 2833 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0) |
| 4 | eluznn0 12890 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) | |
| 5 | 3, 4 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) |
| 6 | nn0uz 12851 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 7 | eucalg.2 | . . . . . . 7 ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) | |
| 8 | 0zd 12557 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ) | |
| 9 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
| 10 | eucalgval.1 | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
| 11 | 10 | eucalgf 16559 | . . . . . . . 8 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
| 13 | 6, 7, 8, 9, 12 | algrf 16549 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0)) |
| 14 | 13 | ffvelcdmda 7063 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
| 15 | 5, 14 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
| 16 | 15 | fvresd 6885 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) |
| 17 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
| 18 | fvres 6884 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd ‘𝐴)) | |
| 19 | 18, 1 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁) |
| 20 | 19 | fveq2d 6869 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ≥‘𝑁)) |
| 21 | 20 | eleq2d 2815 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ≥‘𝑁))) |
| 22 | 21 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴))) |
| 23 | f2ndres 8002 | . . . . 5 ⊢ (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0 | |
| 24 | 10 | eucalglt 16561 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸‘𝑧)) ≠ 0 → (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
| 25 | 11 | ffvelcdmi 7062 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸‘𝑧) ∈ (ℕ0 × ℕ0)) |
| 26 | 25 | fvresd 6885 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) |
| 27 | 26 | neeq1d 2986 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 ↔ (2nd ‘(𝐸‘𝑧)) ≠ 0)) |
| 28 | fvres 6884 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd ‘𝑧)) | |
| 29 | 26, 28 | breq12d 5128 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
| 30 | 24, 27, 29 | 3imtr4d 294 | . . . . 5 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧))) |
| 31 | eqid 2730 | . . . . 5 ⊢ ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) | |
| 32 | 11, 7, 23, 30, 31 | algcvga 16555 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0)) |
| 33 | 17, 22, 32 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0) |
| 34 | 16, 33 | eqtr3d 2767 | . 2 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (2nd ‘(𝑅‘𝐾)) = 0) |
| 35 | 34 | ex 412 | 1 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ifcif 4496 {csn 4597 〈cop 4603 class class class wbr 5115 × cxp 5644 ↾ cres 5648 ∘ ccom 5650 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 1st c1st 7975 2nd c2nd 7976 0cc0 11086 < clt 11226 ℕ0cn0 12458 ℤ≥cuz 12809 mod cmo 13843 seqcseq 13976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-inf 9412 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-fz 13482 df-fl 13766 df-mod 13844 df-seq 13977 |
| This theorem is referenced by: eucalg 16563 |
| Copyright terms: Public domain | W3C validator |