MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalgcvga Structured version   Visualization version   GIF version

Theorem eucalgcvga 16272
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypotheses
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
eucalg.2 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
eucalgcvga.3 𝑁 = (2nd𝐴)
Assertion
Ref Expression
eucalgcvga (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝐴,𝑦   𝑥,𝑅
Allowed substitution hints:   𝑅(𝑦)   𝐸(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem eucalgcvga
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eucalgcvga.3 . . . . . . 7 𝑁 = (2nd𝐴)
2 xp2nd 7850 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → (2nd𝐴) ∈ ℕ0)
31, 2eqeltrid 2844 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0)
4 eluznn0 12639 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
53, 4sylan 579 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℕ0)
6 nn0uz 12602 . . . . . . 7 0 = (ℤ‘0)
7 eucalg.2 . . . . . . 7 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴}))
8 0zd 12314 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ)
9 id 22 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0))
10 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
1110eucalgf 16269 . . . . . . . 8 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)
1211a1i 11 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0))
136, 7, 8, 9, 12algrf 16259 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0))
1413ffvelrnda 6955 . . . . 5 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
155, 14syldan 590 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (𝑅𝐾) ∈ (ℕ0 × ℕ0))
1615fvresd 6788 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = (2nd ‘(𝑅𝐾)))
17 simpl 482 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0))
18 fvres 6787 . . . . . . . 8 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd𝐴))
1918, 1eqtr4di 2797 . . . . . . 7 (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁)
2019fveq2d 6772 . . . . . 6 (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ𝑁))
2120eleq2d 2825 . . . . 5 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ𝑁)))
2221biimpar 477 . . . 4 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)))
23 f2ndres 7842 . . . . 5 (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0
2410eucalglt 16271 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑧)) ≠ 0 → (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
2511ffvelrni 6954 . . . . . . . 8 (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸𝑧) ∈ (ℕ0 × ℕ0))
2625fvresd 6788 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) = (2nd ‘(𝐸𝑧)))
2726neeq1d 3004 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 ↔ (2nd ‘(𝐸𝑧)) ≠ 0))
28 fvres 6787 . . . . . . 7 (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd𝑧))
2926, 28breq12d 5091 . . . . . 6 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸𝑧)) < (2nd𝑧)))
3024, 27, 293imtr4d 293 . . . . 5 (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧)))
31 eqid 2739 . . . . 5 ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴)
3211, 7, 23, 30, 31algcvga 16265 . . . 4 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0))
3317, 22, 32sylc 65 . . 3 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅𝐾)) = 0)
3416, 33eqtr3d 2781 . 2 ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ𝑁)) → (2nd ‘(𝑅𝐾)) = 0)
3534ex 412 1 (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ𝑁) → (2nd ‘(𝑅𝐾)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wne 2944  ifcif 4464  {csn 4566  cop 4572   class class class wbr 5078   × cxp 5586  cres 5590  ccom 5592  wf 6426  cfv 6430  (class class class)co 7268  cmpo 7270  1st c1st 7815  2nd c2nd 7816  0cc0 10855   < clt 10993  0cn0 12216  cuz 12564   mod cmo 13570  seqcseq 13702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fz 13222  df-fl 13493  df-mod 13571  df-seq 13703
This theorem is referenced by:  eucalg  16273
  Copyright terms: Public domain W3C validator