Step | Hyp | Ref
| Expression |
1 | | eucalgcvga.3 |
. . . . . . 7
β’ π = (2nd βπ΄) |
2 | | xp2nd 8004 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β (2nd βπ΄) β
β0) |
3 | 1, 2 | eqeltrid 2837 |
. . . . . 6
β’ (π΄ β (β0
Γ β0) β π β
β0) |
4 | | eluznn0 12897 |
. . . . . 6
β’ ((π β β0
β§ πΎ β
(β€β₯βπ)) β πΎ β
β0) |
5 | 3, 4 | sylan 580 |
. . . . 5
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β πΎ β
β0) |
6 | | nn0uz 12860 |
. . . . . . 7
β’
β0 = (β€β₯β0) |
7 | | eucalg.2 |
. . . . . . 7
β’ π
= seq0((πΈ β 1st ),
(β0 Γ {π΄})) |
8 | | 0zd 12566 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β 0 β β€) |
9 | | id 22 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β π΄ β (β0 Γ
β0)) |
10 | | eucalgval.1 |
. . . . . . . . 9
β’ πΈ = (π₯ β β0, π¦ β β0
β¦ if(π¦ = 0,
β¨π₯, π¦β©, β¨π¦, (π₯ mod π¦)β©)) |
11 | 10 | eucalgf 16516 |
. . . . . . . 8
β’ πΈ:(β0 Γ
β0)βΆ(β0 Γ
β0) |
12 | 11 | a1i 11 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β πΈ:(β0 Γ
β0)βΆ(β0 Γ
β0)) |
13 | 6, 7, 8, 9, 12 | algrf 16506 |
. . . . . 6
β’ (π΄ β (β0
Γ β0) β π
:β0βΆ(β0
Γ β0)) |
14 | 13 | ffvelcdmda 7083 |
. . . . 5
β’ ((π΄ β (β0
Γ β0) β§ πΎ β β0) β (π
βπΎ) β (β0 Γ
β0)) |
15 | 5, 14 | syldan 591 |
. . . 4
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β (π
βπΎ) β (β0 Γ
β0)) |
16 | 15 | fvresd 6908 |
. . 3
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β ((2nd
βΎ (β0 Γ β0))β(π
βπΎ)) = (2nd β(π
βπΎ))) |
17 | | simpl 483 |
. . . 4
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β π΄ β (β0 Γ
β0)) |
18 | | fvres 6907 |
. . . . . . . 8
β’ (π΄ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))βπ΄) = (2nd βπ΄)) |
19 | 18, 1 | eqtr4di 2790 |
. . . . . . 7
β’ (π΄ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))βπ΄) = π) |
20 | 19 | fveq2d 6892 |
. . . . . 6
β’ (π΄ β (β0
Γ β0) β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄)) = (β€β₯βπ)) |
21 | 20 | eleq2d 2819 |
. . . . 5
β’ (π΄ β (β0
Γ β0) β (πΎ β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄)) β πΎ β (β€β₯βπ))) |
22 | 21 | biimpar 478 |
. . . 4
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β πΎ β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄))) |
23 | | f2ndres 7996 |
. . . . 5
β’
(2nd βΎ (β0 Γ
β0)):(β0 Γ
β0)βΆβ0 |
24 | 10 | eucalglt 16518 |
. . . . . 6
β’ (π§ β (β0
Γ β0) β ((2nd β(πΈβπ§)) β 0 β (2nd
β(πΈβπ§)) < (2nd
βπ§))) |
25 | 11 | ffvelcdmi 7082 |
. . . . . . . 8
β’ (π§ β (β0
Γ β0) β (πΈβπ§) β (β0 Γ
β0)) |
26 | 25 | fvresd 6908 |
. . . . . . 7
β’ (π§ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) = (2nd β(πΈβπ§))) |
27 | 26 | neeq1d 3000 |
. . . . . 6
β’ (π§ β (β0
Γ β0) β (((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) β 0 β (2nd
β(πΈβπ§)) β 0)) |
28 | | fvres 6907 |
. . . . . . 7
β’ (π§ β (β0
Γ β0) β ((2nd βΎ
(β0 Γ β0))βπ§) = (2nd βπ§)) |
29 | 26, 28 | breq12d 5160 |
. . . . . 6
β’ (π§ β (β0
Γ β0) β (((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) < ((2nd βΎ
(β0 Γ β0))βπ§) β (2nd β(πΈβπ§)) < (2nd βπ§))) |
30 | 24, 27, 29 | 3imtr4d 293 |
. . . . 5
β’ (π§ β (β0
Γ β0) β (((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) β 0 β ((2nd βΎ
(β0 Γ β0))β(πΈβπ§)) < ((2nd βΎ
(β0 Γ β0))βπ§))) |
31 | | eqid 2732 |
. . . . 5
β’
((2nd βΎ (β0 Γ
β0))βπ΄) = ((2nd βΎ
(β0 Γ β0))βπ΄) |
32 | 11, 7, 23, 30, 31 | algcvga 16512 |
. . . 4
β’ (π΄ β (β0
Γ β0) β (πΎ β
(β€β₯β((2nd βΎ (β0
Γ β0))βπ΄)) β ((2nd βΎ
(β0 Γ β0))β(π
βπΎ)) = 0)) |
33 | 17, 22, 32 | sylc 65 |
. . 3
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β ((2nd
βΎ (β0 Γ β0))β(π
βπΎ)) = 0) |
34 | 16, 33 | eqtr3d 2774 |
. 2
β’ ((π΄ β (β0
Γ β0) β§ πΎ β (β€β₯βπ)) β (2nd
β(π
βπΎ)) = 0) |
35 | 34 | ex 413 |
1
β’ (π΄ β (β0
Γ β0) β (πΎ β (β€β₯βπ) β (2nd
β(π
βπΎ)) = 0)) |