![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eucalgcvga | Structured version Visualization version GIF version |
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
eucalg.2 | ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) |
eucalgcvga.3 | ⊢ 𝑁 = (2nd ‘𝐴) |
Ref | Expression |
---|---|
eucalgcvga | ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucalgcvga.3 | . . . . . . 7 ⊢ 𝑁 = (2nd ‘𝐴) | |
2 | xp2nd 8063 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘𝐴) ∈ ℕ0) | |
3 | 1, 2 | eqeltrid 2848 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0) |
4 | eluznn0 12982 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) | |
5 | 3, 4 | sylan 579 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) |
6 | nn0uz 12945 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | eucalg.2 | . . . . . . 7 ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) | |
8 | 0zd 12651 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ) | |
9 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
10 | eucalgval.1 | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
11 | 10 | eucalgf 16630 | . . . . . . . 8 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
13 | 6, 7, 8, 9, 12 | algrf 16620 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0)) |
14 | 13 | ffvelcdmda 7118 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
15 | 5, 14 | syldan 590 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
16 | 15 | fvresd 6940 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) |
17 | simpl 482 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
18 | fvres 6939 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd ‘𝐴)) | |
19 | 18, 1 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁) |
20 | 19 | fveq2d 6924 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ≥‘𝑁)) |
21 | 20 | eleq2d 2830 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ≥‘𝑁))) |
22 | 21 | biimpar 477 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴))) |
23 | f2ndres 8055 | . . . . 5 ⊢ (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0 | |
24 | 10 | eucalglt 16632 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸‘𝑧)) ≠ 0 → (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
25 | 11 | ffvelcdmi 7117 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸‘𝑧) ∈ (ℕ0 × ℕ0)) |
26 | 25 | fvresd 6940 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) |
27 | 26 | neeq1d 3006 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 ↔ (2nd ‘(𝐸‘𝑧)) ≠ 0)) |
28 | fvres 6939 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd ‘𝑧)) | |
29 | 26, 28 | breq12d 5179 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
30 | 24, 27, 29 | 3imtr4d 294 | . . . . 5 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧))) |
31 | eqid 2740 | . . . . 5 ⊢ ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) | |
32 | 11, 7, 23, 30, 31 | algcvga 16626 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0)) |
33 | 17, 22, 32 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0) |
34 | 16, 33 | eqtr3d 2782 | . 2 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (2nd ‘(𝑅‘𝐾)) = 0) |
35 | 34 | ex 412 | 1 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ifcif 4548 {csn 4648 〈cop 4654 class class class wbr 5166 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1st c1st 8028 2nd c2nd 8029 0cc0 11184 < clt 11324 ℕ0cn0 12553 ℤ≥cuz 12903 mod cmo 13920 seqcseq 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 |
This theorem is referenced by: eucalg 16634 |
Copyright terms: Public domain | W3C validator |