Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eucalgcvga | Structured version Visualization version GIF version |
Description: Once Euclid's Algorithm halts after 𝑁 steps, the second element of the state remains 0 . (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 29-May-2014.) |
Ref | Expression |
---|---|
eucalgval.1 | ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) |
eucalg.2 | ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) |
eucalgcvga.3 | ⊢ 𝑁 = (2nd ‘𝐴) |
Ref | Expression |
---|---|
eucalgcvga | ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eucalgcvga.3 | . . . . . . 7 ⊢ 𝑁 = (2nd ‘𝐴) | |
2 | xp2nd 7896 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (2nd ‘𝐴) ∈ ℕ0) | |
3 | 1, 2 | eqeltrid 2841 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑁 ∈ ℕ0) |
4 | eluznn0 12703 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) | |
5 | 3, 4 | sylan 581 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℕ0) |
6 | nn0uz 12666 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
7 | eucalg.2 | . . . . . . 7 ⊢ 𝑅 = seq0((𝐸 ∘ 1st ), (ℕ0 × {𝐴})) | |
8 | 0zd 12377 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 0 ∈ ℤ) | |
9 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
10 | eucalgval.1 | . . . . . . . . 9 ⊢ 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, 〈𝑥, 𝑦〉, 〈𝑦, (𝑥 mod 𝑦)〉)) | |
11 | 10 | eucalgf 16333 | . . . . . . . 8 ⊢ 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0) |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝐸:(ℕ0 × ℕ0)⟶(ℕ0 × ℕ0)) |
13 | 6, 7, 8, 9, 12 | algrf 16323 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → 𝑅:ℕ0⟶(ℕ0 × ℕ0)) |
14 | 13 | ffvelcdmda 6993 | . . . . 5 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
15 | 5, 14 | syldan 592 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑅‘𝐾) ∈ (ℕ0 × ℕ0)) |
16 | 15 | fvresd 6824 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = (2nd ‘(𝑅‘𝐾))) |
17 | simpl 484 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐴 ∈ (ℕ0 × ℕ0)) | |
18 | fvres 6823 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = (2nd ‘𝐴)) | |
19 | 18, 1 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = 𝑁) |
20 | 19 | fveq2d 6808 | . . . . . 6 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) = (ℤ≥‘𝑁)) |
21 | 20 | eleq2d 2822 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) ↔ 𝐾 ∈ (ℤ≥‘𝑁))) |
22 | 21 | biimpar 479 | . . . 4 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴))) |
23 | f2ndres 7888 | . . . . 5 ⊢ (2nd ↾ (ℕ0 × ℕ0)):(ℕ0 × ℕ0)⟶ℕ0 | |
24 | 10 | eucalglt 16335 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸‘𝑧)) ≠ 0 → (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
25 | 11 | ffvelcdmi 6992 | . . . . . . . 8 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (𝐸‘𝑧) ∈ (ℕ0 × ℕ0)) |
26 | 25 | fvresd 6824 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) = (2nd ‘(𝐸‘𝑧))) |
27 | 26 | neeq1d 3001 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 ↔ (2nd ‘(𝐸‘𝑧)) ≠ 0)) |
28 | fvres 6823 | . . . . . . 7 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) = (2nd ‘𝑧)) | |
29 | 26, 28 | breq12d 5094 | . . . . . 6 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧) ↔ (2nd ‘(𝐸‘𝑧)) < (2nd ‘𝑧))) |
30 | 24, 27, 29 | 3imtr4d 294 | . . . . 5 ⊢ (𝑧 ∈ (ℕ0 × ℕ0) → (((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) ≠ 0 → ((2nd ↾ (ℕ0 × ℕ0))‘(𝐸‘𝑧)) < ((2nd ↾ (ℕ0 × ℕ0))‘𝑧))) |
31 | eqid 2736 | . . . . 5 ⊢ ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) = ((2nd ↾ (ℕ0 × ℕ0))‘𝐴) | |
32 | 11, 7, 23, 30, 31 | algcvga 16329 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘((2nd ↾ (ℕ0 × ℕ0))‘𝐴)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0)) |
33 | 17, 22, 32 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((2nd ↾ (ℕ0 × ℕ0))‘(𝑅‘𝐾)) = 0) |
34 | 16, 33 | eqtr3d 2778 | . 2 ⊢ ((𝐴 ∈ (ℕ0 × ℕ0) ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (2nd ‘(𝑅‘𝐾)) = 0) |
35 | 34 | ex 414 | 1 ⊢ (𝐴 ∈ (ℕ0 × ℕ0) → (𝐾 ∈ (ℤ≥‘𝑁) → (2nd ‘(𝑅‘𝐾)) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ifcif 4465 {csn 4565 〈cop 4571 class class class wbr 5081 × cxp 5598 ↾ cres 5602 ∘ ccom 5604 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 1st c1st 7861 2nd c2nd 7862 0cc0 10917 < clt 11055 ℕ0cn0 12279 ℤ≥cuz 12628 mod cmo 13635 seqcseq 13767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-fz 13286 df-fl 13558 df-mod 13636 df-seq 13768 |
This theorem is referenced by: eucalg 16337 |
Copyright terms: Public domain | W3C validator |