| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flfssfcf | Structured version Visualization version GIF version | ||
| Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
| Ref | Expression |
|---|---|
| flfssfcf | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) ⊆ ((𝐽 fClusf 𝐿)‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimfcls 24035 | . . 3 ⊢ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ⊆ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ⊆ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) |
| 3 | flfval 23999 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) | |
| 4 | fcfval 24042 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) | |
| 5 | 2, 3, 4 | 3sstr4d 4038 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) ⊆ ((𝐽 fClusf 𝐿)‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3950 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 TopOnctopon 22917 Filcfil 23854 FilMap cfm 23942 fLim cflim 23943 fLimf cflf 23944 fClus cfcls 23945 fClusf cfcf 23946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-fbas 21362 df-top 22901 df-topon 22918 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-fil 23855 df-flim 23948 df-flf 23949 df-fcls 23950 df-fcf 23951 |
| This theorem is referenced by: cnpfcfi 24049 |
| Copyright terms: Public domain | W3C validator |