MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfssfcf Structured version   Visualization version   GIF version

Theorem flfssfcf 23187
Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flfssfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) ⊆ ((𝐽 fClusf 𝐿)‘𝐹))

Proof of Theorem flfssfcf
StepHypRef Expression
1 flimfcls 23175 . . 3 (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ⊆ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))
21a1i 11 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ⊆ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
3 flfval 23139 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
4 fcfval 23182 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
52, 3, 43sstr4d 3973 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) ⊆ ((𝐽 fClusf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2110  wss 3892  wf 6428  cfv 6432  (class class class)co 7271  TopOnctopon 22057  Filcfil 22994   FilMap cfm 23082   fLim cflim 23083   fLimf cflf 23084   fClus cfcls 23085   fClusf cfcf 23086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-map 8600  df-fbas 20592  df-top 22041  df-topon 22058  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-fil 22995  df-flim 23088  df-flf 23089  df-fcls 23090  df-fcf 23091
This theorem is referenced by:  cnpfcfi  23189
  Copyright terms: Public domain W3C validator