Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flfssfcf | Structured version Visualization version GIF version |
Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
flfssfcf | β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) β ((π½ fClusf πΏ)βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimfcls 23283 | . . 3 β’ (π½ fLim ((π FilMap πΉ)βπΏ)) β (π½ fClus ((π FilMap πΉ)βπΏ)) | |
2 | 1 | a1i 11 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π½ fLim ((π FilMap πΉ)βπΏ)) β (π½ fClus ((π FilMap πΉ)βπΏ))) |
3 | flfval 23247 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) | |
4 | fcfval 23290 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = (π½ fClus ((π FilMap πΉ)βπΏ))) | |
5 | 2, 3, 4 | 3sstr4d 3979 | 1 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) β ((π½ fClusf πΏ)βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 β wcel 2105 β wss 3898 βΆwf 6475 βcfv 6479 (class class class)co 7337 TopOnctopon 22165 Filcfil 23102 FilMap cfm 23190 fLim cflim 23191 fLimf cflf 23192 fClus cfcls 23193 fClusf cfcf 23194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-map 8688 df-fbas 20700 df-top 22149 df-topon 22166 df-cld 22276 df-ntr 22277 df-cls 22278 df-nei 22355 df-fil 23103 df-flim 23196 df-flf 23197 df-fcls 23198 df-fcf 23199 |
This theorem is referenced by: cnpfcfi 23297 |
Copyright terms: Public domain | W3C validator |