![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flfssfcf | Structured version Visualization version GIF version |
Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
flfssfcf | β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) β ((π½ fClusf πΏ)βπΉ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimfcls 23751 | . . 3 β’ (π½ fLim ((π FilMap πΉ)βπΏ)) β (π½ fClus ((π FilMap πΉ)βπΏ)) | |
2 | 1 | a1i 11 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β (π½ fLim ((π FilMap πΉ)βπΏ)) β (π½ fClus ((π FilMap πΉ)βπΏ))) |
3 | flfval 23715 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) = (π½ fLim ((π FilMap πΉ)βπΏ))) | |
4 | fcfval 23758 | . 2 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fClusf πΏ)βπΉ) = (π½ fClus ((π FilMap πΉ)βπΏ))) | |
5 | 2, 3, 4 | 3sstr4d 4029 | 1 β’ ((π½ β (TopOnβπ) β§ πΏ β (Filβπ) β§ πΉ:πβΆπ) β ((π½ fLimf πΏ)βπΉ) β ((π½ fClusf πΏ)βπΉ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 β wcel 2105 β wss 3948 βΆwf 6539 βcfv 6543 (class class class)co 7412 TopOnctopon 22633 Filcfil 23570 FilMap cfm 23658 fLim cflim 23659 fLimf cflf 23660 fClus cfcls 23661 fClusf cfcf 23662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8826 df-fbas 21142 df-top 22617 df-topon 22634 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-fil 23571 df-flim 23664 df-flf 23665 df-fcls 23666 df-fcf 23667 |
This theorem is referenced by: cnpfcfi 23765 |
Copyright terms: Public domain | W3C validator |