Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem2 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem2 45847
Description: Lemma 2 for ldepsnlinc 45849. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)

Proof of Theorem ldepsnlinclem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8637 . 2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → 𝐹:{𝐴}⟶(Base‘ℤring))
2 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
3 prex 5355 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
42, 3eqeltri 2835 . . . 4 𝐴 ∈ V
54fsn2 7008 . . 3 (𝐹:{𝐴}⟶(Base‘ℤring) ↔ ((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
6 oveq1 7282 . . . . . 6 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
76adantl 482 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 45690 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 484 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝑍 ∈ LMod)
12 3z 12353 . . . . . . . . 9 3 ∈ ℤ
13 6nn 12062 . . . . . . . . . 10 6 ∈ ℕ
1413nnzi 12344 . . . . . . . . 9 6 ∈ ℤ
158zlmodzxzel 45691 . . . . . . . . 9 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
1612, 14, 15mp2an 689 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
172, 16eqeltri 2835 . . . . . . 7 𝐴 ∈ (Base‘𝑍)
1817a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝐴 ∈ (Base‘𝑍))
19 simpl 483 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ (Base‘ℤring))
20 eqid 2738 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
219simpri 486 . . . . . . 7 ring = (Scalar‘𝑍)
22 eqid 2738 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
23 eqid 2738 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2420, 21, 22, 23lincvalsng 45757 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐴 ∈ (Base‘𝑍) ∧ (𝐹𝐴) ∈ (Base‘ℤring)) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
2511, 18, 19, 24syl3anc 1370 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
267, 25eqtrd 2778 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
27 eqid 2738 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 eqid 2738 . . . . . 6 (-g𝑍) = (-g𝑍)
29 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
308, 27, 23, 28, 2, 29zlmodzxznm 45838 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
31 r19.26 3095 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
32 oveq1 7282 . . . . . . . . . 10 (𝑖 = (𝐹𝐴) → (𝑖( ·𝑠𝑍)𝐴) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
3332neeq1d 3003 . . . . . . . . 9 (𝑖 = (𝐹𝐴) → ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ↔ ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
3433rspcv 3557 . . . . . . . 8 ((𝐹𝐴) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
35 zringbas 20676 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3635eqcomi 2747 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3736eleq2i 2830 . . . . . . . . . 10 ((𝐹𝐴) ∈ (Base‘ℤring) ↔ (𝐹𝐴) ∈ ℤ)
3837biimpi 215 . . . . . . . . 9 ((𝐹𝐴) ∈ (Base‘ℤring) → (𝐹𝐴) ∈ ℤ)
3938adantr 481 . . . . . . . 8 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ ℤ)
4034, 39syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4140adantr 481 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4231, 41sylbi 216 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4330, 42ax-mp 5 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵)
4426, 43eqnetrd 3011 . . 3 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
455, 44sylbi 216 . 2 (𝐹:{𝐴}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
461, 45syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  {csn 4561  {cpr 4563  cop 4567  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  1c1 10872  2c2 12028  3c3 12029  4c4 12030  6c6 12032  cz 12319  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  -gcsg 18579  LModclmod 20123  ringczring 20670   freeLMod cfrlm 20953   linC clinc 45745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-dsmm 20939  df-frlm 20954  df-linc 45747
This theorem is referenced by:  ldepsnlinc  45849
  Copyright terms: Public domain W3C validator