| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldepsnlinclem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for ldepsnlinc 48493. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| Ref | Expression |
|---|---|
| ldepsnlinclem2 | ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8776 | . 2 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → 𝐹:{𝐴}⟶(Base‘ℤring)) | |
| 2 | zlmodzxzldep.a | . . . . 5 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 3 | prex 5376 | . . . . 5 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
| 4 | 2, 3 | eqeltri 2824 | . . . 4 ⊢ 𝐴 ∈ V |
| 5 | 4 | fsn2 7070 | . . 3 ⊢ (𝐹:{𝐴}⟶(Base‘ℤring) ↔ ((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
| 6 | oveq1 7356 | . . . . . 6 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹( linC ‘𝑍){𝐴}) = ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴})) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹( linC ‘𝑍){𝐴}) = ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴})) |
| 8 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 9 | 8 | zlmodzxzlmod 48338 | . . . . . . . 8 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
| 10 | 9 | simpli 483 | . . . . . . 7 ⊢ 𝑍 ∈ LMod |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → 𝑍 ∈ LMod) |
| 12 | 3z 12508 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
| 13 | 6nn 12217 | . . . . . . . . . 10 ⊢ 6 ∈ ℕ | |
| 14 | 13 | nnzi 12499 | . . . . . . . . 9 ⊢ 6 ∈ ℤ |
| 15 | 8 | zlmodzxzel 48339 | . . . . . . . . 9 ⊢ ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {〈0, 3〉, 〈1, 6〉} ∈ (Base‘𝑍)) |
| 16 | 12, 14, 15 | mp2an 692 | . . . . . . . 8 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ (Base‘𝑍) |
| 17 | 2, 16 | eqeltri 2824 | . . . . . . 7 ⊢ 𝐴 ∈ (Base‘𝑍) |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → 𝐴 ∈ (Base‘𝑍)) |
| 19 | simpl 482 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹‘𝐴) ∈ (Base‘ℤring)) | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 21 | 9 | simpri 485 | . . . . . . 7 ⊢ ℤring = (Scalar‘𝑍) |
| 22 | eqid 2729 | . . . . . . 7 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
| 23 | eqid 2729 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
| 24 | 20, 21, 22, 23 | lincvalsng 48401 | . . . . . 6 ⊢ ((𝑍 ∈ LMod ∧ 𝐴 ∈ (Base‘𝑍) ∧ (𝐹‘𝐴) ∈ (Base‘ℤring)) → ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴}) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) |
| 25 | 11, 18, 19, 24 | syl3anc 1373 | . . . . 5 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴}) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) |
| 26 | 7, 25 | eqtrd 2764 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹( linC ‘𝑍){𝐴}) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) |
| 27 | eqid 2729 | . . . . . 6 ⊢ {〈0, 0〉, 〈1, 0〉} = {〈0, 0〉, 〈1, 0〉} | |
| 28 | eqid 2729 | . . . . . 6 ⊢ (-g‘𝑍) = (-g‘𝑍) | |
| 29 | zlmodzxzldep.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 30 | 8, 27, 23, 28, 2, 29 | zlmodzxznm 48482 | . . . . 5 ⊢ ∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
| 31 | r19.26 3089 | . . . . . 6 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) | |
| 32 | oveq1 7356 | . . . . . . . . . 10 ⊢ (𝑖 = (𝐹‘𝐴) → (𝑖( ·𝑠 ‘𝑍)𝐴) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) | |
| 33 | 32 | neeq1d 2984 | . . . . . . . . 9 ⊢ (𝑖 = (𝐹‘𝐴) → ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ↔ ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
| 34 | 33 | rspcv 3573 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
| 35 | zringbas 21360 | . . . . . . . . . . . 12 ⊢ ℤ = (Base‘ℤring) | |
| 36 | 35 | eqcomi 2738 | . . . . . . . . . . 11 ⊢ (Base‘ℤring) = ℤ |
| 37 | 36 | eleq2i 2820 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) ∈ (Base‘ℤring) ↔ (𝐹‘𝐴) ∈ ℤ) |
| 38 | 37 | biimpi 216 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ∈ (Base‘ℤring) → (𝐹‘𝐴) ∈ ℤ) |
| 39 | 38 | adantr 480 | . . . . . . . 8 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹‘𝐴) ∈ ℤ) |
| 40 | 34, 39 | syl11 33 | . . . . . . 7 ⊢ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 → (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
| 41 | 40 | adantr 480 | . . . . . 6 ⊢ ((∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
| 42 | 31, 41 | sylbi 217 | . . . . 5 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
| 43 | 30, 42 | ax-mp 5 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵) |
| 44 | 26, 43 | eqnetrd 2992 | . . 3 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
| 45 | 5, 44 | sylbi 217 | . 2 ⊢ (𝐹:{𝐴}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
| 46 | 1, 45 | syl 17 | 1 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3436 {csn 4577 {cpr 4579 〈cop 4583 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 0cc0 11009 1c1 11010 2c2 12183 3c3 12184 4c4 12185 6c6 12187 ℤcz 12471 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 -gcsg 18814 LModclmod 20763 ℤringczring 21353 freeLMod cfrlm 21653 linC clinc 48389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-sra 21077 df-rgmod 21078 df-cnfld 21262 df-zring 21354 df-dsmm 21639 df-frlm 21654 df-linc 48391 |
| This theorem is referenced by: ldepsnlinc 48493 |
| Copyright terms: Public domain | W3C validator |