Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem2 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem2 48491
Description: Lemma 2 for ldepsnlinc 48493. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)

Proof of Theorem ldepsnlinclem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8776 . 2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → 𝐹:{𝐴}⟶(Base‘ℤring))
2 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
3 prex 5376 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
42, 3eqeltri 2824 . . . 4 𝐴 ∈ V
54fsn2 7070 . . 3 (𝐹:{𝐴}⟶(Base‘ℤring) ↔ ((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
6 oveq1 7356 . . . . . 6 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
76adantl 481 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 48338 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 483 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝑍 ∈ LMod)
12 3z 12508 . . . . . . . . 9 3 ∈ ℤ
13 6nn 12217 . . . . . . . . . 10 6 ∈ ℕ
1413nnzi 12499 . . . . . . . . 9 6 ∈ ℤ
158zlmodzxzel 48339 . . . . . . . . 9 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
1612, 14, 15mp2an 692 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
172, 16eqeltri 2824 . . . . . . 7 𝐴 ∈ (Base‘𝑍)
1817a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝐴 ∈ (Base‘𝑍))
19 simpl 482 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ (Base‘ℤring))
20 eqid 2729 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
219simpri 485 . . . . . . 7 ring = (Scalar‘𝑍)
22 eqid 2729 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
23 eqid 2729 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2420, 21, 22, 23lincvalsng 48401 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐴 ∈ (Base‘𝑍) ∧ (𝐹𝐴) ∈ (Base‘ℤring)) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
2511, 18, 19, 24syl3anc 1373 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
267, 25eqtrd 2764 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
27 eqid 2729 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 eqid 2729 . . . . . 6 (-g𝑍) = (-g𝑍)
29 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
308, 27, 23, 28, 2, 29zlmodzxznm 48482 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
31 r19.26 3089 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
32 oveq1 7356 . . . . . . . . . 10 (𝑖 = (𝐹𝐴) → (𝑖( ·𝑠𝑍)𝐴) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
3332neeq1d 2984 . . . . . . . . 9 (𝑖 = (𝐹𝐴) → ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ↔ ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
3433rspcv 3573 . . . . . . . 8 ((𝐹𝐴) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
35 zringbas 21360 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3635eqcomi 2738 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3736eleq2i 2820 . . . . . . . . . 10 ((𝐹𝐴) ∈ (Base‘ℤring) ↔ (𝐹𝐴) ∈ ℤ)
3837biimpi 216 . . . . . . . . 9 ((𝐹𝐴) ∈ (Base‘ℤring) → (𝐹𝐴) ∈ ℤ)
3938adantr 480 . . . . . . . 8 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ ℤ)
4034, 39syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4140adantr 480 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4231, 41sylbi 217 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4330, 42ax-mp 5 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵)
4426, 43eqnetrd 2992 . . 3 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
455, 44sylbi 217 . 2 (𝐹:{𝐴}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
461, 45syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  {csn 4577  {cpr 4579  cop 4583  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  0cc0 11009  1c1 11010  2c2 12183  3c3 12184  4c4 12185  6c6 12187  cz 12471  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  -gcsg 18814  LModclmod 20763  ringczring 21353   freeLMod cfrlm 21653   linC clinc 48389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-cnfld 21262  df-zring 21354  df-dsmm 21639  df-frlm 21654  df-linc 48391
This theorem is referenced by:  ldepsnlinc  48493
  Copyright terms: Public domain W3C validator