Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem2 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem2 48495
Description: Lemma 2 for ldepsnlinc 48497. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)

Proof of Theorem ldepsnlinclem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8822 . 2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → 𝐹:{𝐴}⟶(Base‘ℤring))
2 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
3 prex 5392 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
42, 3eqeltri 2824 . . . 4 𝐴 ∈ V
54fsn2 7108 . . 3 (𝐹:{𝐴}⟶(Base‘ℤring) ↔ ((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
6 oveq1 7394 . . . . . 6 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
76adantl 481 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 48342 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 483 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝑍 ∈ LMod)
12 3z 12566 . . . . . . . . 9 3 ∈ ℤ
13 6nn 12275 . . . . . . . . . 10 6 ∈ ℕ
1413nnzi 12557 . . . . . . . . 9 6 ∈ ℤ
158zlmodzxzel 48343 . . . . . . . . 9 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
1612, 14, 15mp2an 692 . . . . . . . 8 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
172, 16eqeltri 2824 . . . . . . 7 𝐴 ∈ (Base‘𝑍)
1817a1i 11 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → 𝐴 ∈ (Base‘𝑍))
19 simpl 482 . . . . . 6 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ (Base‘ℤring))
20 eqid 2729 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
219simpri 485 . . . . . . 7 ring = (Scalar‘𝑍)
22 eqid 2729 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
23 eqid 2729 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2420, 21, 22, 23lincvalsng 48405 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐴 ∈ (Base‘𝑍) ∧ (𝐹𝐴) ∈ (Base‘ℤring)) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
2511, 18, 19, 24syl3anc 1373 . . . . 5 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ({⟨𝐴, (𝐹𝐴)⟩} ( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
267, 25eqtrd 2764 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
27 eqid 2729 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 eqid 2729 . . . . . 6 (-g𝑍) = (-g𝑍)
29 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
308, 27, 23, 28, 2, 29zlmodzxznm 48486 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
31 r19.26 3091 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
32 oveq1 7394 . . . . . . . . . 10 (𝑖 = (𝐹𝐴) → (𝑖( ·𝑠𝑍)𝐴) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
3332neeq1d 2984 . . . . . . . . 9 (𝑖 = (𝐹𝐴) → ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ↔ ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
3433rspcv 3584 . . . . . . . 8 ((𝐹𝐴) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
35 zringbas 21363 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3635eqcomi 2738 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3736eleq2i 2820 . . . . . . . . . 10 ((𝐹𝐴) ∈ (Base‘ℤring) ↔ (𝐹𝐴) ∈ ℤ)
3837biimpi 216 . . . . . . . . 9 ((𝐹𝐴) ∈ (Base‘ℤring) → (𝐹𝐴) ∈ ℤ)
3938adantr 480 . . . . . . . 8 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹𝐴) ∈ ℤ)
4034, 39syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4140adantr 480 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4231, 41sylbi 217 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵))
4330, 42ax-mp 5 . . . 4 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ≠ 𝐵)
4426, 43eqnetrd 2992 . . 3 (((𝐹𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
455, 44sylbi 217 . 2 (𝐹:{𝐴}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
461, 45syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  {csn 4589  {cpr 4591  cop 4595  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  1c1 11069  2c2 12241  3c3 12242  4c4 12243  6c6 12245  cz 12529  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  -gcsg 18867  LModclmod 20766  ringczring 21356   freeLMod cfrlm 21655   linC clinc 48393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-dsmm 21641  df-frlm 21656  df-linc 48395
This theorem is referenced by:  ldepsnlinc  48497
  Copyright terms: Public domain W3C validator