Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldepsnlinclem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for ldepsnlinc 45737. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
ldepsnlinclem2 | ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8595 | . 2 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → 𝐹:{𝐴}⟶(Base‘ℤring)) | |
2 | zlmodzxzldep.a | . . . . 5 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
3 | prex 5350 | . . . . 5 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
4 | 2, 3 | eqeltri 2835 | . . . 4 ⊢ 𝐴 ∈ V |
5 | 4 | fsn2 6990 | . . 3 ⊢ (𝐹:{𝐴}⟶(Base‘ℤring) ↔ ((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
6 | oveq1 7262 | . . . . . 6 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹( linC ‘𝑍){𝐴}) = ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴})) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹( linC ‘𝑍){𝐴}) = ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴})) |
8 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
9 | 8 | zlmodzxzlmod 45578 | . . . . . . . 8 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
10 | 9 | simpli 483 | . . . . . . 7 ⊢ 𝑍 ∈ LMod |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → 𝑍 ∈ LMod) |
12 | 3z 12283 | . . . . . . . . 9 ⊢ 3 ∈ ℤ | |
13 | 6nn 11992 | . . . . . . . . . 10 ⊢ 6 ∈ ℕ | |
14 | 13 | nnzi 12274 | . . . . . . . . 9 ⊢ 6 ∈ ℤ |
15 | 8 | zlmodzxzel 45579 | . . . . . . . . 9 ⊢ ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {〈0, 3〉, 〈1, 6〉} ∈ (Base‘𝑍)) |
16 | 12, 14, 15 | mp2an 688 | . . . . . . . 8 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ (Base‘𝑍) |
17 | 2, 16 | eqeltri 2835 | . . . . . . 7 ⊢ 𝐴 ∈ (Base‘𝑍) |
18 | 17 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → 𝐴 ∈ (Base‘𝑍)) |
19 | simpl 482 | . . . . . 6 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹‘𝐴) ∈ (Base‘ℤring)) | |
20 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
21 | 9 | simpri 485 | . . . . . . 7 ⊢ ℤring = (Scalar‘𝑍) |
22 | eqid 2738 | . . . . . . 7 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
23 | eqid 2738 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
24 | 20, 21, 22, 23 | lincvalsng 45645 | . . . . . 6 ⊢ ((𝑍 ∈ LMod ∧ 𝐴 ∈ (Base‘𝑍) ∧ (𝐹‘𝐴) ∈ (Base‘ℤring)) → ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴}) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) |
25 | 11, 18, 19, 24 | syl3anc 1369 | . . . . 5 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ({〈𝐴, (𝐹‘𝐴)〉} ( linC ‘𝑍){𝐴}) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) |
26 | 7, 25 | eqtrd 2778 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹( linC ‘𝑍){𝐴}) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) |
27 | eqid 2738 | . . . . . 6 ⊢ {〈0, 0〉, 〈1, 0〉} = {〈0, 0〉, 〈1, 0〉} | |
28 | eqid 2738 | . . . . . 6 ⊢ (-g‘𝑍) = (-g‘𝑍) | |
29 | zlmodzxzldep.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
30 | 8, 27, 23, 28, 2, 29 | zlmodzxznm 45726 | . . . . 5 ⊢ ∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
31 | r19.26 3094 | . . . . . 6 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) | |
32 | oveq1 7262 | . . . . . . . . . 10 ⊢ (𝑖 = (𝐹‘𝐴) → (𝑖( ·𝑠 ‘𝑍)𝐴) = ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴)) | |
33 | 32 | neeq1d 3002 | . . . . . . . . 9 ⊢ (𝑖 = (𝐹‘𝐴) → ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ↔ ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
34 | 33 | rspcv 3547 | . . . . . . . 8 ⊢ ((𝐹‘𝐴) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
35 | zringbas 20588 | . . . . . . . . . . . 12 ⊢ ℤ = (Base‘ℤring) | |
36 | 35 | eqcomi 2747 | . . . . . . . . . . 11 ⊢ (Base‘ℤring) = ℤ |
37 | 36 | eleq2i 2830 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐴) ∈ (Base‘ℤring) ↔ (𝐹‘𝐴) ∈ ℤ) |
38 | 37 | biimpi 215 | . . . . . . . . 9 ⊢ ((𝐹‘𝐴) ∈ (Base‘ℤring) → (𝐹‘𝐴) ∈ ℤ) |
39 | 38 | adantr 480 | . . . . . . . 8 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹‘𝐴) ∈ ℤ) |
40 | 34, 39 | syl11 33 | . . . . . . 7 ⊢ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 → (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
41 | 40 | adantr 480 | . . . . . 6 ⊢ ((∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
42 | 31, 41 | sylbi 216 | . . . . 5 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵)) |
43 | 30, 42 | ax-mp 5 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → ((𝐹‘𝐴)( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵) |
44 | 26, 43 | eqnetrd 3010 | . . 3 ⊢ (((𝐹‘𝐴) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
45 | 5, 44 | sylbi 216 | . 2 ⊢ (𝐹:{𝐴}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
46 | 1, 45 | syl 17 | 1 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 {csn 4558 {cpr 4560 〈cop 4564 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 1c1 10803 2c2 11958 3c3 11959 4c4 11960 6c6 11962 ℤcz 12249 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 -gcsg 18494 LModclmod 20038 ℤringzring 20582 freeLMod cfrlm 20863 linC clinc 45633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-cntz 18838 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-cnfld 20511 df-zring 20583 df-dsmm 20849 df-frlm 20864 df-linc 45635 |
This theorem is referenced by: ldepsnlinc 45737 |
Copyright terms: Public domain | W3C validator |