| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldepsnlinclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for ldepsnlinc 48451. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| Ref | Expression |
|---|---|
| ldepsnlinclem1 | ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8868 | . 2 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring)) | |
| 2 | zlmodzxzldep.b | . . . . 5 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 3 | prex 5412 | . . . . 5 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
| 4 | 2, 3 | eqeltri 2831 | . . . 4 ⊢ 𝐵 ∈ V |
| 5 | 4 | fsn2 7131 | . . 3 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉})) |
| 6 | oveq1 7417 | . . . . . 6 ⊢ (𝐹 = {〈𝐵, (𝐹‘𝐵)〉} → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) | |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) |
| 8 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 9 | 8 | zlmodzxzlmod 48296 | . . . . . . . 8 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
| 10 | 9 | simpli 483 | . . . . . . 7 ⊢ 𝑍 ∈ LMod |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝑍 ∈ LMod) |
| 12 | 2z 12629 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
| 13 | 4z 12631 | . . . . . . . . 9 ⊢ 4 ∈ ℤ | |
| 14 | 8 | zlmodzxzel 48297 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍)) |
| 15 | 12, 13, 14 | mp2an 692 | . . . . . . . 8 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍) |
| 16 | 2, 15 | eqeltri 2831 | . . . . . . 7 ⊢ 𝐵 ∈ (Base‘𝑍) |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝐵 ∈ (Base‘𝑍)) |
| 18 | simpl 482 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ (Base‘ℤring)) | |
| 19 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
| 20 | 9 | simpri 485 | . . . . . . 7 ⊢ ℤring = (Scalar‘𝑍) |
| 21 | eqid 2736 | . . . . . . 7 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
| 22 | eqid 2736 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
| 23 | 19, 20, 21, 22 | lincvalsng 48359 | . . . . . 6 ⊢ ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹‘𝐵) ∈ (Base‘ℤring)) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
| 24 | 11, 17, 18, 23 | syl3anc 1373 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
| 25 | 7, 24 | eqtrd 2771 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
| 26 | eqid 2736 | . . . . . 6 ⊢ {〈0, 0〉, 〈1, 0〉} = {〈0, 0〉, 〈1, 0〉} | |
| 27 | eqid 2736 | . . . . . 6 ⊢ (-g‘𝑍) = (-g‘𝑍) | |
| 28 | zlmodzxzldep.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 29 | 8, 26, 22, 27, 28, 2 | zlmodzxznm 48440 | . . . . 5 ⊢ ∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
| 30 | r19.26 3099 | . . . . . 6 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) | |
| 31 | oveq1 7417 | . . . . . . . . . 10 ⊢ (𝑖 = (𝐹‘𝐵) → (𝑖( ·𝑠 ‘𝑍)𝐵) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) | |
| 32 | 31 | neeq1d 2992 | . . . . . . . . 9 ⊢ (𝑖 = (𝐹‘𝐵) → ((𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
| 33 | 32 | rspcv 3602 | . . . . . . . 8 ⊢ ((𝐹‘𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
| 34 | zringbas 21419 | . . . . . . . . . . . 12 ⊢ ℤ = (Base‘ℤring) | |
| 35 | 34 | eqcomi 2745 | . . . . . . . . . . 11 ⊢ (Base‘ℤring) = ℤ |
| 36 | 35 | eleq2i 2827 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) ↔ (𝐹‘𝐵) ∈ ℤ) |
| 37 | 36 | biimpi 216 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) → (𝐹‘𝐵) ∈ ℤ) |
| 38 | 37 | adantr 480 | . . . . . . . 8 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ ℤ) |
| 39 | 33, 38 | syl11 33 | . . . . . . 7 ⊢ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
| 40 | 39 | adantl 481 | . . . . . 6 ⊢ ((∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
| 41 | 30, 40 | sylbi 217 | . . . . 5 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
| 42 | 29, 41 | ax-mp 5 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
| 43 | 25, 42 | eqnetrd 3000 | . . 3 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
| 44 | 5, 43 | sylbi 217 | . 2 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
| 45 | 1, 44 | syl 17 | 1 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 Vcvv 3464 {csn 4606 {cpr 4608 〈cop 4612 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 0cc0 11134 1c1 11135 2c2 12300 3c3 12301 4c4 12302 6c6 12304 ℤcz 12593 Basecbs 17233 Scalarcsca 17279 ·𝑠 cvsca 17280 -gcsg 18923 LModclmod 20822 ℤringczring 21412 freeLMod cfrlm 21711 linC clinc 48347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-prm 16696 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrng 20511 df-subrg 20535 df-lmod 20824 df-lss 20894 df-sra 21136 df-rgmod 21137 df-cnfld 21321 df-zring 21413 df-dsmm 21697 df-frlm 21712 df-linc 48349 |
| This theorem is referenced by: ldepsnlinc 48451 |
| Copyright terms: Public domain | W3C validator |