Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem1 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem1 48422
Description: Lemma 1 for ldepsnlinc 48425. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)

Proof of Theorem ldepsnlinclem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8889 . 2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring))
2 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
3 prex 5437 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
42, 3eqeltri 2837 . . . 4 𝐵 ∈ V
54fsn2 7156 . . 3 (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}))
6 oveq1 7438 . . . . . 6 (𝐹 = {⟨𝐵, (𝐹𝐵)⟩} → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
76adantl 481 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 48270 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 483 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝑍 ∈ LMod)
12 2z 12649 . . . . . . . . 9 2 ∈ ℤ
13 4z 12651 . . . . . . . . 9 4 ∈ ℤ
148zlmodzxzel 48271 . . . . . . . . 9 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
1512, 13, 14mp2an 692 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
162, 15eqeltri 2837 . . . . . . 7 𝐵 ∈ (Base‘𝑍)
1716a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝐵 ∈ (Base‘𝑍))
18 simpl 482 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ (Base‘ℤring))
19 eqid 2737 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
209simpri 485 . . . . . . 7 ring = (Scalar‘𝑍)
21 eqid 2737 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
22 eqid 2737 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2319, 20, 21, 22lincvalsng 48333 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹𝐵) ∈ (Base‘ℤring)) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
2411, 17, 18, 23syl3anc 1373 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
257, 24eqtrd 2777 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
26 eqid 2737 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
27 eqid 2737 . . . . . 6 (-g𝑍) = (-g𝑍)
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
298, 26, 22, 27, 28, 2zlmodzxznm 48414 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
30 r19.26 3111 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
31 oveq1 7438 . . . . . . . . . 10 (𝑖 = (𝐹𝐵) → (𝑖( ·𝑠𝑍)𝐵) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
3231neeq1d 3000 . . . . . . . . 9 (𝑖 = (𝐹𝐵) → ((𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
3332rspcv 3618 . . . . . . . 8 ((𝐹𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
34 zringbas 21464 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3534eqcomi 2746 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3635eleq2i 2833 . . . . . . . . . 10 ((𝐹𝐵) ∈ (Base‘ℤring) ↔ (𝐹𝐵) ∈ ℤ)
3736biimpi 216 . . . . . . . . 9 ((𝐹𝐵) ∈ (Base‘ℤring) → (𝐹𝐵) ∈ ℤ)
3837adantr 480 . . . . . . . 8 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ ℤ)
3933, 38syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4039adantl 481 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4130, 40sylbi 217 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4229, 41ax-mp 5 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴)
4325, 42eqnetrd 3008 . . 3 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
445, 43sylbi 217 . 2 (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
451, 44syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  {csn 4626  {cpr 4628  cop 4632  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  0cc0 11155  1c1 11156  2c2 12321  3c3 12322  4c4 12323  6c6 12325  cz 12613  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  -gcsg 18953  LModclmod 20858  ringczring 21457   freeLMod cfrlm 21766   linC clinc 48321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-dsmm 21752  df-frlm 21767  df-linc 48323
This theorem is referenced by:  ldepsnlinc  48425
  Copyright terms: Public domain W3C validator