![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldepsnlinclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for ldepsnlinc 47891. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
ldepsnlinclem1 | ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8878 | . 2 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring)) | |
2 | zlmodzxzldep.b | . . . . 5 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
3 | prex 5438 | . . . . 5 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
4 | 2, 3 | eqeltri 2822 | . . . 4 ⊢ 𝐵 ∈ V |
5 | 4 | fsn2 7150 | . . 3 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉})) |
6 | oveq1 7431 | . . . . . 6 ⊢ (𝐹 = {〈𝐵, (𝐹‘𝐵)〉} → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) | |
7 | 6 | adantl 480 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) |
8 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
9 | 8 | zlmodzxzlmod 47733 | . . . . . . . 8 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
10 | 9 | simpli 482 | . . . . . . 7 ⊢ 𝑍 ∈ LMod |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝑍 ∈ LMod) |
12 | 2z 12646 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
13 | 4z 12648 | . . . . . . . . 9 ⊢ 4 ∈ ℤ | |
14 | 8 | zlmodzxzel 47734 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍)) |
15 | 12, 13, 14 | mp2an 690 | . . . . . . . 8 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍) |
16 | 2, 15 | eqeltri 2822 | . . . . . . 7 ⊢ 𝐵 ∈ (Base‘𝑍) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝐵 ∈ (Base‘𝑍)) |
18 | simpl 481 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ (Base‘ℤring)) | |
19 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
20 | 9 | simpri 484 | . . . . . . 7 ⊢ ℤring = (Scalar‘𝑍) |
21 | eqid 2726 | . . . . . . 7 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
22 | eqid 2726 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
23 | 19, 20, 21, 22 | lincvalsng 47799 | . . . . . 6 ⊢ ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹‘𝐵) ∈ (Base‘ℤring)) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
24 | 11, 17, 18, 23 | syl3anc 1368 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
25 | 7, 24 | eqtrd 2766 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
26 | eqid 2726 | . . . . . 6 ⊢ {〈0, 0〉, 〈1, 0〉} = {〈0, 0〉, 〈1, 0〉} | |
27 | eqid 2726 | . . . . . 6 ⊢ (-g‘𝑍) = (-g‘𝑍) | |
28 | zlmodzxzldep.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
29 | 8, 26, 22, 27, 28, 2 | zlmodzxznm 47880 | . . . . 5 ⊢ ∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
30 | r19.26 3101 | . . . . . 6 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) | |
31 | oveq1 7431 | . . . . . . . . . 10 ⊢ (𝑖 = (𝐹‘𝐵) → (𝑖( ·𝑠 ‘𝑍)𝐵) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) | |
32 | 31 | neeq1d 2990 | . . . . . . . . 9 ⊢ (𝑖 = (𝐹‘𝐵) → ((𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
33 | 32 | rspcv 3604 | . . . . . . . 8 ⊢ ((𝐹‘𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
34 | zringbas 21443 | . . . . . . . . . . . 12 ⊢ ℤ = (Base‘ℤring) | |
35 | 34 | eqcomi 2735 | . . . . . . . . . . 11 ⊢ (Base‘ℤring) = ℤ |
36 | 35 | eleq2i 2818 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) ↔ (𝐹‘𝐵) ∈ ℤ) |
37 | 36 | biimpi 215 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) → (𝐹‘𝐵) ∈ ℤ) |
38 | 37 | adantr 479 | . . . . . . . 8 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ ℤ) |
39 | 33, 38 | syl11 33 | . . . . . . 7 ⊢ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
40 | 39 | adantl 480 | . . . . . 6 ⊢ ((∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
41 | 30, 40 | sylbi 216 | . . . . 5 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
42 | 29, 41 | ax-mp 5 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
43 | 25, 42 | eqnetrd 2998 | . . 3 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
44 | 5, 43 | sylbi 216 | . 2 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
45 | 1, 44 | syl 17 | 1 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 Vcvv 3462 {csn 4633 {cpr 4635 〈cop 4639 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 ↑m cmap 8855 0cc0 11158 1c1 11159 2c2 12319 3c3 12320 4c4 12321 6c6 12323 ℤcz 12610 Basecbs 17213 Scalarcsca 17269 ·𝑠 cvsca 17270 -gcsg 18930 LModclmod 20836 ℤringczring 21436 freeLMod cfrlm 21744 linC clinc 47787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-sup 9485 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-rp 13029 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-dvds 16257 df-prm 16673 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-cntz 19311 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-subrng 20528 df-subrg 20553 df-lmod 20838 df-lss 20909 df-sra 21151 df-rgmod 21152 df-cnfld 21344 df-zring 21437 df-dsmm 21730 df-frlm 21745 df-linc 47789 |
This theorem is referenced by: ldepsnlinc 47891 |
Copyright terms: Public domain | W3C validator |