Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem1 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem1 48498
Description: Lemma 1 for ldepsnlinc 48501. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)

Proof of Theorem ldepsnlinclem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8825 . 2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring))
2 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
3 prex 5395 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
42, 3eqeltri 2825 . . . 4 𝐵 ∈ V
54fsn2 7111 . . 3 (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}))
6 oveq1 7397 . . . . . 6 (𝐹 = {⟨𝐵, (𝐹𝐵)⟩} → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
76adantl 481 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 48346 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 483 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝑍 ∈ LMod)
12 2z 12572 . . . . . . . . 9 2 ∈ ℤ
13 4z 12574 . . . . . . . . 9 4 ∈ ℤ
148zlmodzxzel 48347 . . . . . . . . 9 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
1512, 13, 14mp2an 692 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
162, 15eqeltri 2825 . . . . . . 7 𝐵 ∈ (Base‘𝑍)
1716a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝐵 ∈ (Base‘𝑍))
18 simpl 482 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ (Base‘ℤring))
19 eqid 2730 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
209simpri 485 . . . . . . 7 ring = (Scalar‘𝑍)
21 eqid 2730 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
22 eqid 2730 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2319, 20, 21, 22lincvalsng 48409 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹𝐵) ∈ (Base‘ℤring)) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
2411, 17, 18, 23syl3anc 1373 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
257, 24eqtrd 2765 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
26 eqid 2730 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
27 eqid 2730 . . . . . 6 (-g𝑍) = (-g𝑍)
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
298, 26, 22, 27, 28, 2zlmodzxznm 48490 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
30 r19.26 3092 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
31 oveq1 7397 . . . . . . . . . 10 (𝑖 = (𝐹𝐵) → (𝑖( ·𝑠𝑍)𝐵) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
3231neeq1d 2985 . . . . . . . . 9 (𝑖 = (𝐹𝐵) → ((𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
3332rspcv 3587 . . . . . . . 8 ((𝐹𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
34 zringbas 21370 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3534eqcomi 2739 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3635eleq2i 2821 . . . . . . . . . 10 ((𝐹𝐵) ∈ (Base‘ℤring) ↔ (𝐹𝐵) ∈ ℤ)
3736biimpi 216 . . . . . . . . 9 ((𝐹𝐵) ∈ (Base‘ℤring) → (𝐹𝐵) ∈ ℤ)
3837adantr 480 . . . . . . . 8 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ ℤ)
3933, 38syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4039adantl 481 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4130, 40sylbi 217 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4229, 41ax-mp 5 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴)
4325, 42eqnetrd 2993 . . 3 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
445, 43sylbi 217 . 2 (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
451, 44syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  {csn 4592  {cpr 4594  cop 4598  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  0cc0 11075  1c1 11076  2c2 12248  3c3 12249  4c4 12250  6c6 12252  cz 12536  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  -gcsg 18874  LModclmod 20773  ringczring 21363   freeLMod cfrlm 21662   linC clinc 48397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-cnfld 21272  df-zring 21364  df-dsmm 21648  df-frlm 21663  df-linc 48399
This theorem is referenced by:  ldepsnlinc  48501
  Copyright terms: Public domain W3C validator