Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsnlinclem1 Structured version   Visualization version   GIF version

Theorem ldepsnlinclem1 44550
Description: Lemma 1 for ldepsnlinc 44553. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
ldepsnlinclem1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)

Proof of Theorem ldepsnlinclem1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8420 . 2 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring))
2 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
3 prex 5323 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
42, 3eqeltri 2907 . . . 4 𝐵 ∈ V
54fsn2 6891 . . 3 (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}))
6 oveq1 7155 . . . . . 6 (𝐹 = {⟨𝐵, (𝐹𝐵)⟩} → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
76adantl 484 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}))
8 zlmodzxzldep.z . . . . . . . . 9 𝑍 = (ℤring freeLMod {0, 1})
98zlmodzxzlmod 44392 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
109simpli 486 . . . . . . 7 𝑍 ∈ LMod
1110a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝑍 ∈ LMod)
12 2z 12006 . . . . . . . . 9 2 ∈ ℤ
13 4z 12008 . . . . . . . . 9 4 ∈ ℤ
148zlmodzxzel 44393 . . . . . . . . 9 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
1512, 13, 14mp2an 690 . . . . . . . 8 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
162, 15eqeltri 2907 . . . . . . 7 𝐵 ∈ (Base‘𝑍)
1716a1i 11 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → 𝐵 ∈ (Base‘𝑍))
18 simpl 485 . . . . . 6 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ (Base‘ℤring))
19 eqid 2819 . . . . . . 7 (Base‘𝑍) = (Base‘𝑍)
209simpri 488 . . . . . . 7 ring = (Scalar‘𝑍)
21 eqid 2819 . . . . . . 7 (Base‘ℤring) = (Base‘ℤring)
22 eqid 2819 . . . . . . 7 ( ·𝑠𝑍) = ( ·𝑠𝑍)
2319, 20, 21, 22lincvalsng 44461 . . . . . 6 ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹𝐵) ∈ (Base‘ℤring)) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
2411, 17, 18, 23syl3anc 1366 . . . . 5 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ({⟨𝐵, (𝐹𝐵)⟩} ( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
257, 24eqtrd 2854 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
26 eqid 2819 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
27 eqid 2819 . . . . . 6 (-g𝑍) = (-g𝑍)
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
298, 26, 22, 27, 28, 2zlmodzxznm 44542 . . . . 5 𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴)
30 r19.26 3168 . . . . . 6 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴))
31 oveq1 7155 . . . . . . . . . 10 (𝑖 = (𝐹𝐵) → (𝑖( ·𝑠𝑍)𝐵) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
3231neeq1d 3073 . . . . . . . . 9 (𝑖 = (𝐹𝐵) → ((𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
3332rspcv 3616 . . . . . . . 8 ((𝐹𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
34 zringbas 20615 . . . . . . . . . . . 12 ℤ = (Base‘ℤring)
3534eqcomi 2828 . . . . . . . . . . 11 (Base‘ℤring) = ℤ
3635eleq2i 2902 . . . . . . . . . 10 ((𝐹𝐵) ∈ (Base‘ℤring) ↔ (𝐹𝐵) ∈ ℤ)
3736biimpi 218 . . . . . . . . 9 ((𝐹𝐵) ∈ (Base‘ℤring) → (𝐹𝐵) ∈ ℤ)
3837adantr 483 . . . . . . . 8 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹𝐵) ∈ ℤ)
3933, 38syl11 33 . . . . . . 7 (∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴 → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4039adantl 484 . . . . . 6 ((∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4130, 40sylbi 219 . . . . 5 (∀𝑖 ∈ ℤ ((𝑖( ·𝑠𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠𝑍)𝐵) ≠ 𝐴) → (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴))
4229, 41ax-mp 5 . . . 4 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ≠ 𝐴)
4325, 42eqnetrd 3081 . . 3 (((𝐹𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {⟨𝐵, (𝐹𝐵)⟩}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
445, 43sylbi 219 . 2 (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
451, 44syl 17 1 (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wne 3014  wral 3136  Vcvv 3493  {csn 4559  {cpr 4561  cop 4565  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398  0cc0 10529  1c1 10530  2c2 11684  3c3 11685  4c4 11686  6c6 11688  cz 11973  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  -gcsg 18097  LModclmod 19626  ringzring 20609   freeLMod cfrlm 20882   linC clinc 44449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16008  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-subrg 19525  df-lmod 19628  df-lss 19696  df-sra 19936  df-rgmod 19937  df-cnfld 20538  df-zring 20610  df-dsmm 20868  df-frlm 20883  df-linc 44451
This theorem is referenced by:  ldepsnlinc  44553
  Copyright terms: Public domain W3C validator