![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldepsnlinclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for ldepsnlinc 48354. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
ldepsnlinclem1 | ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8888 | . 2 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → 𝐹:{𝐵}⟶(Base‘ℤring)) | |
2 | zlmodzxzldep.b | . . . . 5 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
3 | prex 5443 | . . . . 5 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
4 | 2, 3 | eqeltri 2835 | . . . 4 ⊢ 𝐵 ∈ V |
5 | 4 | fsn2 7156 | . . 3 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) ↔ ((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉})) |
6 | oveq1 7438 | . . . . . 6 ⊢ (𝐹 = {〈𝐵, (𝐹‘𝐵)〉} → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) | |
7 | 6 | adantl 481 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵})) |
8 | zlmodzxzldep.z | . . . . . . . . 9 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
9 | 8 | zlmodzxzlmod 48199 | . . . . . . . 8 ⊢ (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) |
10 | 9 | simpli 483 | . . . . . . 7 ⊢ 𝑍 ∈ LMod |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝑍 ∈ LMod) |
12 | 2z 12647 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
13 | 4z 12649 | . . . . . . . . 9 ⊢ 4 ∈ ℤ | |
14 | 8 | zlmodzxzel 48200 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍)) |
15 | 12, 13, 14 | mp2an 692 | . . . . . . . 8 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ (Base‘𝑍) |
16 | 2, 15 | eqeltri 2835 | . . . . . . 7 ⊢ 𝐵 ∈ (Base‘𝑍) |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → 𝐵 ∈ (Base‘𝑍)) |
18 | simpl 482 | . . . . . 6 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ (Base‘ℤring)) | |
19 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑍) = (Base‘𝑍) | |
20 | 9 | simpri 485 | . . . . . . 7 ⊢ ℤring = (Scalar‘𝑍) |
21 | eqid 2735 | . . . . . . 7 ⊢ (Base‘ℤring) = (Base‘ℤring) | |
22 | eqid 2735 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝑍) = ( ·𝑠 ‘𝑍) | |
23 | 19, 20, 21, 22 | lincvalsng 48262 | . . . . . 6 ⊢ ((𝑍 ∈ LMod ∧ 𝐵 ∈ (Base‘𝑍) ∧ (𝐹‘𝐵) ∈ (Base‘ℤring)) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
24 | 11, 17, 18, 23 | syl3anc 1370 | . . . . 5 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ({〈𝐵, (𝐹‘𝐵)〉} ( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
25 | 7, 24 | eqtrd 2775 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) |
26 | eqid 2735 | . . . . . 6 ⊢ {〈0, 0〉, 〈1, 0〉} = {〈0, 0〉, 〈1, 0〉} | |
27 | eqid 2735 | . . . . . 6 ⊢ (-g‘𝑍) = (-g‘𝑍) | |
28 | zlmodzxzldep.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
29 | 8, 26, 22, 27, 28, 2 | zlmodzxznm 48343 | . . . . 5 ⊢ ∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
30 | r19.26 3109 | . . . . . 6 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) ↔ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) | |
31 | oveq1 7438 | . . . . . . . . . 10 ⊢ (𝑖 = (𝐹‘𝐵) → (𝑖( ·𝑠 ‘𝑍)𝐵) = ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵)) | |
32 | 31 | neeq1d 2998 | . . . . . . . . 9 ⊢ (𝑖 = (𝐹‘𝐵) → ((𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 ↔ ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
33 | 32 | rspcv 3618 | . . . . . . . 8 ⊢ ((𝐹‘𝐵) ∈ ℤ → (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
34 | zringbas 21482 | . . . . . . . . . . . 12 ⊢ ℤ = (Base‘ℤring) | |
35 | 34 | eqcomi 2744 | . . . . . . . . . . 11 ⊢ (Base‘ℤring) = ℤ |
36 | 35 | eleq2i 2831 | . . . . . . . . . 10 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) ↔ (𝐹‘𝐵) ∈ ℤ) |
37 | 36 | biimpi 216 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (Base‘ℤring) → (𝐹‘𝐵) ∈ ℤ) |
38 | 37 | adantr 480 | . . . . . . . 8 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹‘𝐵) ∈ ℤ) |
39 | 33, 38 | syl11 33 | . . . . . . 7 ⊢ (∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴 → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
40 | 39 | adantl 481 | . . . . . 6 ⊢ ((∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ ∀𝑖 ∈ ℤ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
41 | 30, 40 | sylbi 217 | . . . . 5 ⊢ (∀𝑖 ∈ ℤ ((𝑖( ·𝑠 ‘𝑍)𝐴) ≠ 𝐵 ∧ (𝑖( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) → (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴)) |
42 | 29, 41 | ax-mp 5 | . . . 4 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → ((𝐹‘𝐵)( ·𝑠 ‘𝑍)𝐵) ≠ 𝐴) |
43 | 25, 42 | eqnetrd 3006 | . . 3 ⊢ (((𝐹‘𝐵) ∈ (Base‘ℤring) ∧ 𝐹 = {〈𝐵, (𝐹‘𝐵)〉}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
44 | 5, 43 | sylbi 217 | . 2 ⊢ (𝐹:{𝐵}⟶(Base‘ℤring) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
45 | 1, 44 | syl 17 | 1 ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 Vcvv 3478 {csn 4631 {cpr 4633 〈cop 4637 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 0cc0 11153 1c1 11154 2c2 12319 3c3 12320 4c4 12321 6c6 12323 ℤcz 12611 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 -gcsg 18966 LModclmod 20875 ℤringczring 21475 freeLMod cfrlm 21784 linC clinc 48250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-prm 16706 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-cnfld 21383 df-zring 21476 df-dsmm 21770 df-frlm 21785 df-linc 48252 |
This theorem is referenced by: ldepsnlinc 48354 |
Copyright terms: Public domain | W3C validator |