Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem4 Structured version   Visualization version   GIF version

Theorem fucocolem4 49011
Description: Lemma for fucoco 49012. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucoco.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco.oq = (comp‘𝑄)
Assertion
Ref Expression
fucocolem4 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑂   𝑥,𝑃   𝑥,𝑌
Allowed substitution hints:   𝑄(𝑥)   (𝑥)

Proof of Theorem fucocolem4
StepHypRef Expression
1 fucoco.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
2 eqid 2734 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
3 eqid 2734 . . 3 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2734 . . 3 (comp‘𝐸) = (comp‘𝐸)
5 fucoco.oq . . 3 = (comp‘𝑄)
6 fucoco.a . . . . . 6 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
76fveq2d 6891 . . . . 5 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = ((𝑋𝑃𝑌)‘⟨𝑅, 𝑆⟩))
8 df-ov 7417 . . . . 5 (𝑅(𝑋𝑃𝑌)𝑆) = ((𝑋𝑃𝑌)‘⟨𝑅, 𝑆⟩)
97, 8eqtr4di 2787 . . . 4 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = (𝑅(𝑋𝑃𝑌)𝑆))
10 fucoco.o . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
11 fucoco.s . . . . 5 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
12 fucoco.r . . . . 5 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
13 fucoco.x . . . . 5 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
14 fucoco.y . . . . 5 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
1510, 11, 12, 13, 14fuco22nat 49001 . . . 4 (𝜑 → (𝑅(𝑋𝑃𝑌)𝑆) ∈ ((𝑂𝑋)(𝐶 Nat 𝐸)(𝑂𝑌)))
169, 15eqeltrd 2833 . . 3 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) ∈ ((𝑂𝑋)(𝐶 Nat 𝐸)(𝑂𝑌)))
17 fucoco.b . . . . . 6 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
1817fveq2d 6891 . . . . 5 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = ((𝑌𝑃𝑍)‘⟨𝑈, 𝑉⟩))
19 df-ov 7417 . . . . 5 (𝑈(𝑌𝑃𝑍)𝑉) = ((𝑌𝑃𝑍)‘⟨𝑈, 𝑉⟩)
2018, 19eqtr4di 2787 . . . 4 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = (𝑈(𝑌𝑃𝑍)𝑉))
21 fucoco.v . . . . 5 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
22 fucoco.u . . . . 5 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
23 fucoco.z . . . . 5 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
2410, 21, 22, 14, 23fuco22nat 49001 . . . 4 (𝜑 → (𝑈(𝑌𝑃𝑍)𝑉) ∈ ((𝑂𝑌)(𝐶 Nat 𝐸)(𝑂𝑍)))
2520, 24eqeltrd 2833 . . 3 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) ∈ ((𝑂𝑌)(𝐶 Nat 𝐸)(𝑂𝑍)))
261, 2, 3, 4, 5, 16, 25fucco 17982 . 2 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥))))
27 relfunc 17879 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
28 eqid 2734 . . . . . . . . . . . . . 14 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2928natrcl 17970 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
3011, 29syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
3130simpld 494 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
32 1st2ndbr 8050 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
3327, 31, 32sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
34 relfunc 17879 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
35 eqid 2734 . . . . . . . . . . . . . 14 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
3635natrcl 17970 . . . . . . . . . . . . 13 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
3712, 36syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
3837simpld 494 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
39 1st2ndbr 8050 . . . . . . . . . . 11 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
4034, 38, 39sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
41 1st2nd 8047 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
4234, 38, 41sylancr 587 . . . . . . . . . . . 12 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
43 1st2nd 8047 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
4427, 31, 43sylancr 587 . . . . . . . . . . . 12 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
4542, 44opeq12d 4863 . . . . . . . . . . 11 (𝜑 → ⟨𝐹, 𝐺⟩ = ⟨⟨(1st𝐹), (2nd𝐹)⟩, ⟨(1st𝐺), (2nd𝐺)⟩⟩)
4613, 45eqtrd 2769 . . . . . . . . . 10 (𝜑𝑋 = ⟨⟨(1st𝐹), (2nd𝐹)⟩, ⟨(1st𝐺), (2nd𝐺)⟩⟩)
4710, 33, 40, 46fuco111 48985 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂𝑋)) = ((1st𝐹) ∘ (1st𝐺)))
4847fveq1d 6889 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂𝑋))‘𝑥) = (((1st𝐹) ∘ (1st𝐺))‘𝑥))
4948adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑋))‘𝑥) = (((1st𝐹) ∘ (1st𝐺))‘𝑥))
50 eqid 2734 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
513, 50, 33funcf1 17883 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
5251adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
53 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
5452, 53fvco3d 6990 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐹) ∘ (1st𝐺))‘𝑥) = ((1st𝐹)‘((1st𝐺)‘𝑥)))
5549, 54eqtrd 2769 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑋))‘𝑥) = ((1st𝐹)‘((1st𝐺)‘𝑥)))
5630simprd 495 . . . . . . . . . . 11 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
57 1st2ndbr 8050 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)) → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5827, 56, 57sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5937simprd 495 . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
60 1st2ndbr 8050 . . . . . . . . . . 11 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
6134, 59, 60sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
62 1st2nd 8047 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
6334, 59, 62sylancr 587 . . . . . . . . . . . 12 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
64 1st2nd 8047 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)) → 𝐿 = ⟨(1st𝐿), (2nd𝐿)⟩)
6527, 56, 64sylancr 587 . . . . . . . . . . . 12 (𝜑𝐿 = ⟨(1st𝐿), (2nd𝐿)⟩)
6663, 65opeq12d 4863 . . . . . . . . . . 11 (𝜑 → ⟨𝐾, 𝐿⟩ = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐿), (2nd𝐿)⟩⟩)
6714, 66eqtrd 2769 . . . . . . . . . 10 (𝜑𝑌 = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐿), (2nd𝐿)⟩⟩)
6810, 58, 61, 67fuco111 48985 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂𝑌)) = ((1st𝐾) ∘ (1st𝐿)))
6968fveq1d 6889 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂𝑌))‘𝑥) = (((1st𝐾) ∘ (1st𝐿))‘𝑥))
7069adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑌))‘𝑥) = (((1st𝐾) ∘ (1st𝐿))‘𝑥))
713, 50, 58funcf1 17883 . . . . . . . . 9 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
7271adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
7372, 53fvco3d 6990 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐾) ∘ (1st𝐿))‘𝑥) = ((1st𝐾)‘((1st𝐿)‘𝑥)))
7470, 73eqtrd 2769 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑌))‘𝑥) = ((1st𝐾)‘((1st𝐿)‘𝑥)))
7555, 74opeq12d 4863 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩ = ⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩)
7628natrcl 17970 . . . . . . . . . . . 12 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
7721, 76syl 17 . . . . . . . . . . 11 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
7877simprd 495 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
79 1st2ndbr 8050 . . . . . . . . . 10 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
8027, 78, 79sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
8135natrcl 17970 . . . . . . . . . . . 12 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
8222, 81syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
8382simprd 495 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
84 1st2ndbr 8050 . . . . . . . . . 10 ((Rel (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)) → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
8534, 83, 84sylancr 587 . . . . . . . . 9 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
86 1st2nd 8047 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
8734, 83, 86sylancr 587 . . . . . . . . . . 11 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
88 1st2nd 8047 . . . . . . . . . . . 12 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → 𝑁 = ⟨(1st𝑁), (2nd𝑁)⟩)
8927, 78, 88sylancr 587 . . . . . . . . . . 11 (𝜑𝑁 = ⟨(1st𝑁), (2nd𝑁)⟩)
9087, 89opeq12d 4863 . . . . . . . . . 10 (𝜑 → ⟨𝑀, 𝑁⟩ = ⟨⟨(1st𝑀), (2nd𝑀)⟩, ⟨(1st𝑁), (2nd𝑁)⟩⟩)
9123, 90eqtrd 2769 . . . . . . . . 9 (𝜑𝑍 = ⟨⟨(1st𝑀), (2nd𝑀)⟩, ⟨(1st𝑁), (2nd𝑁)⟩⟩)
9210, 80, 85, 91fuco111 48985 . . . . . . . 8 (𝜑 → (1st ‘(𝑂𝑍)) = ((1st𝑀) ∘ (1st𝑁)))
9392fveq1d 6889 . . . . . . 7 (𝜑 → ((1st ‘(𝑂𝑍))‘𝑥) = (((1st𝑀) ∘ (1st𝑁))‘𝑥))
9493adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑍))‘𝑥) = (((1st𝑀) ∘ (1st𝑁))‘𝑥))
953, 50, 80funcf1 17883 . . . . . . . 8 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
9695adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
9796, 53fvco3d 6990 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝑀) ∘ (1st𝑁))‘𝑥) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
9894, 97eqtrd 2769 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑍))‘𝑥) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
9975, 98oveq12d 7432 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥)) = (⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥))))
10010, 14, 23, 21, 22fuco22a 49005 . . . . . 6 (𝜑 → (𝑈(𝑌𝑃𝑍)𝑉) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))))
10120, 100eqtrd 2769 . . . . 5 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))))
102 ovexd 7449 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥))) ∈ V)
103101, 102fvmpt2d 7010 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑌𝑃𝑍)‘𝐵)‘𝑥) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥))))
10410, 13, 14, 11, 12fuco22a 49005 . . . . . 6 (𝜑 → (𝑅(𝑋𝑃𝑌)𝑆) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
1059, 104eqtrd 2769 . . . . 5 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
106 ovexd 7449 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))) ∈ V)
107105, 106fvmpt2d 7010 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑋𝑃𝑌)‘𝐴)‘𝑥) = ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))
10899, 103, 107oveq123d 7435 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥)) = (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
109108mpteq2dva 5224 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
11026, 109eqtrd 2769 1 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  cop 4614   class class class wbr 5125  cmpt 5207  ccom 5671  Rel wrel 5672  wf 6538  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Basecbs 17230  compcco 17286   Func cfunc 17871   Nat cnat 17961   FuncCat cfuc 17962  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-func 17875  df-cofu 17877  df-nat 17963  df-fuc 17964  df-fuco 48972
This theorem is referenced by:  fucoco  49012
  Copyright terms: Public domain W3C validator