Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem4 Structured version   Visualization version   GIF version

Theorem fucocolem4 49251
Description: Lemma for fucoco 49252. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucoco.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco.oq = (comp‘𝑄)
Assertion
Ref Expression
fucocolem4 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑂   𝑥,𝑃   𝑥,𝑌
Allowed substitution hints:   𝑄(𝑥)   (𝑥)

Proof of Theorem fucocolem4
StepHypRef Expression
1 fucoco.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
2 eqid 2730 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
3 eqid 2730 . . 3 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2730 . . 3 (comp‘𝐸) = (comp‘𝐸)
5 fucoco.oq . . 3 = (comp‘𝑄)
6 fucoco.a . . . . . 6 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
76fveq2d 6869 . . . . 5 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = ((𝑋𝑃𝑌)‘⟨𝑅, 𝑆⟩))
8 df-ov 7397 . . . . 5 (𝑅(𝑋𝑃𝑌)𝑆) = ((𝑋𝑃𝑌)‘⟨𝑅, 𝑆⟩)
97, 8eqtr4di 2783 . . . 4 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = (𝑅(𝑋𝑃𝑌)𝑆))
10 fucoco.o . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
11 fucoco.s . . . . 5 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
12 fucoco.r . . . . 5 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
13 fucoco.x . . . . 5 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
14 fucoco.y . . . . 5 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
1510, 11, 12, 13, 14fuco22nat 49241 . . . 4 (𝜑 → (𝑅(𝑋𝑃𝑌)𝑆) ∈ ((𝑂𝑋)(𝐶 Nat 𝐸)(𝑂𝑌)))
169, 15eqeltrd 2829 . . 3 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) ∈ ((𝑂𝑋)(𝐶 Nat 𝐸)(𝑂𝑌)))
17 fucoco.b . . . . . 6 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
1817fveq2d 6869 . . . . 5 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = ((𝑌𝑃𝑍)‘⟨𝑈, 𝑉⟩))
19 df-ov 7397 . . . . 5 (𝑈(𝑌𝑃𝑍)𝑉) = ((𝑌𝑃𝑍)‘⟨𝑈, 𝑉⟩)
2018, 19eqtr4di 2783 . . . 4 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = (𝑈(𝑌𝑃𝑍)𝑉))
21 fucoco.v . . . . 5 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
22 fucoco.u . . . . 5 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
23 fucoco.z . . . . 5 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
2410, 21, 22, 14, 23fuco22nat 49241 . . . 4 (𝜑 → (𝑈(𝑌𝑃𝑍)𝑉) ∈ ((𝑂𝑌)(𝐶 Nat 𝐸)(𝑂𝑍)))
2520, 24eqeltrd 2829 . . 3 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) ∈ ((𝑂𝑌)(𝐶 Nat 𝐸)(𝑂𝑍)))
261, 2, 3, 4, 5, 16, 25fucco 17933 . 2 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥))))
27 eqid 2730 . . . . . . . . . . . . . 14 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2827natrcl 17921 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2911, 28syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
3029simpld 494 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
3130func1st2nd 48993 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
32 eqid 2730 . . . . . . . . . . . . . 14 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
3332natrcl 17921 . . . . . . . . . . . . 13 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
3412, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
3534simpld 494 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
3635func1st2nd 48993 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
37 relfunc 17830 . . . . . . . . . . . . 13 Rel (𝐷 Func 𝐸)
38 1st2nd 8027 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
3937, 35, 38sylancr 587 . . . . . . . . . . . 12 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
40 relfunc 17830 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝐷)
41 1st2nd 8027 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
4240, 30, 41sylancr 587 . . . . . . . . . . . 12 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
4339, 42opeq12d 4853 . . . . . . . . . . 11 (𝜑 → ⟨𝐹, 𝐺⟩ = ⟨⟨(1st𝐹), (2nd𝐹)⟩, ⟨(1st𝐺), (2nd𝐺)⟩⟩)
4413, 43eqtrd 2765 . . . . . . . . . 10 (𝜑𝑋 = ⟨⟨(1st𝐹), (2nd𝐹)⟩, ⟨(1st𝐺), (2nd𝐺)⟩⟩)
4510, 31, 36, 44fuco111 49225 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂𝑋)) = ((1st𝐹) ∘ (1st𝐺)))
4645fveq1d 6867 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂𝑋))‘𝑥) = (((1st𝐹) ∘ (1st𝐺))‘𝑥))
4746adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑋))‘𝑥) = (((1st𝐹) ∘ (1st𝐺))‘𝑥))
48 eqid 2730 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
493, 48, 31funcf1 17834 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
5049adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
51 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
5250, 51fvco3d 6968 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐹) ∘ (1st𝐺))‘𝑥) = ((1st𝐹)‘((1st𝐺)‘𝑥)))
5347, 52eqtrd 2765 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑋))‘𝑥) = ((1st𝐹)‘((1st𝐺)‘𝑥)))
5429simprd 495 . . . . . . . . . . 11 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
5554func1st2nd 48993 . . . . . . . . . 10 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5634simprd 495 . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
5756func1st2nd 48993 . . . . . . . . . 10 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
58 1st2nd 8027 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
5937, 56, 58sylancr 587 . . . . . . . . . . . 12 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
60 1st2nd 8027 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)) → 𝐿 = ⟨(1st𝐿), (2nd𝐿)⟩)
6140, 54, 60sylancr 587 . . . . . . . . . . . 12 (𝜑𝐿 = ⟨(1st𝐿), (2nd𝐿)⟩)
6259, 61opeq12d 4853 . . . . . . . . . . 11 (𝜑 → ⟨𝐾, 𝐿⟩ = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐿), (2nd𝐿)⟩⟩)
6314, 62eqtrd 2765 . . . . . . . . . 10 (𝜑𝑌 = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐿), (2nd𝐿)⟩⟩)
6410, 55, 57, 63fuco111 49225 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂𝑌)) = ((1st𝐾) ∘ (1st𝐿)))
6564fveq1d 6867 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂𝑌))‘𝑥) = (((1st𝐾) ∘ (1st𝐿))‘𝑥))
6665adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑌))‘𝑥) = (((1st𝐾) ∘ (1st𝐿))‘𝑥))
673, 48, 55funcf1 17834 . . . . . . . . 9 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
6867adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
6968, 51fvco3d 6968 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐾) ∘ (1st𝐿))‘𝑥) = ((1st𝐾)‘((1st𝐿)‘𝑥)))
7066, 69eqtrd 2765 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑌))‘𝑥) = ((1st𝐾)‘((1st𝐿)‘𝑥)))
7153, 70opeq12d 4853 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩ = ⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩)
7227natrcl 17921 . . . . . . . . . . . 12 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
7321, 72syl 17 . . . . . . . . . . 11 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
7473simprd 495 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
7574func1st2nd 48993 . . . . . . . . 9 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
7632natrcl 17921 . . . . . . . . . . . 12 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
7722, 76syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
7877simprd 495 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
7978func1st2nd 48993 . . . . . . . . 9 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
80 1st2nd 8027 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
8137, 78, 80sylancr 587 . . . . . . . . . . 11 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
82 1st2nd 8027 . . . . . . . . . . . 12 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → 𝑁 = ⟨(1st𝑁), (2nd𝑁)⟩)
8340, 74, 82sylancr 587 . . . . . . . . . . 11 (𝜑𝑁 = ⟨(1st𝑁), (2nd𝑁)⟩)
8481, 83opeq12d 4853 . . . . . . . . . 10 (𝜑 → ⟨𝑀, 𝑁⟩ = ⟨⟨(1st𝑀), (2nd𝑀)⟩, ⟨(1st𝑁), (2nd𝑁)⟩⟩)
8523, 84eqtrd 2765 . . . . . . . . 9 (𝜑𝑍 = ⟨⟨(1st𝑀), (2nd𝑀)⟩, ⟨(1st𝑁), (2nd𝑁)⟩⟩)
8610, 75, 79, 85fuco111 49225 . . . . . . . 8 (𝜑 → (1st ‘(𝑂𝑍)) = ((1st𝑀) ∘ (1st𝑁)))
8786fveq1d 6867 . . . . . . 7 (𝜑 → ((1st ‘(𝑂𝑍))‘𝑥) = (((1st𝑀) ∘ (1st𝑁))‘𝑥))
8887adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑍))‘𝑥) = (((1st𝑀) ∘ (1st𝑁))‘𝑥))
893, 48, 75funcf1 17834 . . . . . . . 8 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
9089adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
9190, 51fvco3d 6968 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝑀) ∘ (1st𝑁))‘𝑥) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
9288, 91eqtrd 2765 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑍))‘𝑥) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
9371, 92oveq12d 7412 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥)) = (⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥))))
9410, 14, 23, 21, 22fuco22a 49245 . . . . . 6 (𝜑 → (𝑈(𝑌𝑃𝑍)𝑉) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))))
9520, 94eqtrd 2765 . . . . 5 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))))
96 ovexd 7429 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥))) ∈ V)
9795, 96fvmpt2d 6988 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑌𝑃𝑍)‘𝐵)‘𝑥) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥))))
9810, 13, 14, 11, 12fuco22a 49245 . . . . . 6 (𝜑 → (𝑅(𝑋𝑃𝑌)𝑆) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
999, 98eqtrd 2765 . . . . 5 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
100 ovexd 7429 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))) ∈ V)
10199, 100fvmpt2d 6988 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑋𝑃𝑌)‘𝐴)‘𝑥) = ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))
10293, 97, 101oveq123d 7415 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥)) = (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
103102mpteq2dva 5208 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
10426, 103eqtrd 2765 1 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3455  cop 4603  cmpt 5196  ccom 5650  Rel wrel 5651  wf 6515  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  compcco 17238   Func cfunc 17822   Nat cnat 17912   FuncCat cfuc 17913  F cfuco 49211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-map 8805  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-fz 13482  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17186  df-hom 17250  df-cco 17251  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-nat 17914  df-fuc 17915  df-fuco 49212
This theorem is referenced by:  fucoco  49252
  Copyright terms: Public domain W3C validator