Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucocolem4 Structured version   Visualization version   GIF version

Theorem fucocolem4 49481
Description: Lemma for fucoco 49482. The composed natural transformations are mapped to composition of 4 natural transformations. (Contributed by Zhi Wang, 2-Oct-2025.)
Hypotheses
Ref Expression
fucoco.r (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
fucoco.s (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
fucoco.u (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
fucoco.v (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
fucoco.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoco.x (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
fucoco.y (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
fucoco.z (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
fucoco.a (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
fucoco.b (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
fucoco.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoco.oq = (comp‘𝑄)
Assertion
Ref Expression
fucocolem4 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐺   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋   𝑥,𝑍   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑂   𝑥,𝑃   𝑥,𝑌
Allowed substitution hints:   𝑄(𝑥)   (𝑥)

Proof of Theorem fucocolem4
StepHypRef Expression
1 fucoco.q . . 3 𝑄 = (𝐶 FuncCat 𝐸)
2 eqid 2733 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
3 eqid 2733 . . 3 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2733 . . 3 (comp‘𝐸) = (comp‘𝐸)
5 fucoco.oq . . 3 = (comp‘𝑄)
6 fucoco.a . . . . . 6 (𝜑𝐴 = ⟨𝑅, 𝑆⟩)
76fveq2d 6832 . . . . 5 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = ((𝑋𝑃𝑌)‘⟨𝑅, 𝑆⟩))
8 df-ov 7355 . . . . 5 (𝑅(𝑋𝑃𝑌)𝑆) = ((𝑋𝑃𝑌)‘⟨𝑅, 𝑆⟩)
97, 8eqtr4di 2786 . . . 4 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = (𝑅(𝑋𝑃𝑌)𝑆))
10 fucoco.o . . . . 5 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
11 fucoco.s . . . . 5 (𝜑𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿))
12 fucoco.r . . . . 5 (𝜑𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾))
13 fucoco.x . . . . 5 (𝜑𝑋 = ⟨𝐹, 𝐺⟩)
14 fucoco.y . . . . 5 (𝜑𝑌 = ⟨𝐾, 𝐿⟩)
1510, 11, 12, 13, 14fuco22nat 49471 . . . 4 (𝜑 → (𝑅(𝑋𝑃𝑌)𝑆) ∈ ((𝑂𝑋)(𝐶 Nat 𝐸)(𝑂𝑌)))
169, 15eqeltrd 2833 . . 3 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) ∈ ((𝑂𝑋)(𝐶 Nat 𝐸)(𝑂𝑌)))
17 fucoco.b . . . . . 6 (𝜑𝐵 = ⟨𝑈, 𝑉⟩)
1817fveq2d 6832 . . . . 5 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = ((𝑌𝑃𝑍)‘⟨𝑈, 𝑉⟩))
19 df-ov 7355 . . . . 5 (𝑈(𝑌𝑃𝑍)𝑉) = ((𝑌𝑃𝑍)‘⟨𝑈, 𝑉⟩)
2018, 19eqtr4di 2786 . . . 4 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = (𝑈(𝑌𝑃𝑍)𝑉))
21 fucoco.v . . . . 5 (𝜑𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁))
22 fucoco.u . . . . 5 (𝜑𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀))
23 fucoco.z . . . . 5 (𝜑𝑍 = ⟨𝑀, 𝑁⟩)
2410, 21, 22, 14, 23fuco22nat 49471 . . . 4 (𝜑 → (𝑈(𝑌𝑃𝑍)𝑉) ∈ ((𝑂𝑌)(𝐶 Nat 𝐸)(𝑂𝑍)))
2520, 24eqeltrd 2833 . . 3 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) ∈ ((𝑂𝑌)(𝐶 Nat 𝐸)(𝑂𝑍)))
261, 2, 3, 4, 5, 16, 25fucco 17874 . 2 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥))))
27 eqid 2733 . . . . . . . . . . . . . 14 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
2827natrcl 17862 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐺(𝐶 Nat 𝐷)𝐿) → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
2911, 28syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)))
3029simpld 494 . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
3130func1st2nd 49201 . . . . . . . . . 10 (𝜑 → (1st𝐺)(𝐶 Func 𝐷)(2nd𝐺))
32 eqid 2733 . . . . . . . . . . . . . 14 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
3332natrcl 17862 . . . . . . . . . . . . 13 (𝑅 ∈ (𝐹(𝐷 Nat 𝐸)𝐾) → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
3412, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)))
3534simpld 494 . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐷 Func 𝐸))
3635func1st2nd 49201 . . . . . . . . . 10 (𝜑 → (1st𝐹)(𝐷 Func 𝐸)(2nd𝐹))
37 relfunc 17771 . . . . . . . . . . . . 13 Rel (𝐷 Func 𝐸)
38 1st2nd 7977 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
3937, 35, 38sylancr 587 . . . . . . . . . . . 12 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
40 relfunc 17771 . . . . . . . . . . . . 13 Rel (𝐶 Func 𝐷)
41 1st2nd 7977 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
4240, 30, 41sylancr 587 . . . . . . . . . . . 12 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
4339, 42opeq12d 4832 . . . . . . . . . . 11 (𝜑 → ⟨𝐹, 𝐺⟩ = ⟨⟨(1st𝐹), (2nd𝐹)⟩, ⟨(1st𝐺), (2nd𝐺)⟩⟩)
4413, 43eqtrd 2768 . . . . . . . . . 10 (𝜑𝑋 = ⟨⟨(1st𝐹), (2nd𝐹)⟩, ⟨(1st𝐺), (2nd𝐺)⟩⟩)
4510, 31, 36, 44fuco111 49455 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂𝑋)) = ((1st𝐹) ∘ (1st𝐺)))
4645fveq1d 6830 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂𝑋))‘𝑥) = (((1st𝐹) ∘ (1st𝐺))‘𝑥))
4746adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑋))‘𝑥) = (((1st𝐹) ∘ (1st𝐺))‘𝑥))
48 eqid 2733 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
493, 48, 31funcf1 17775 . . . . . . . . 9 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
5049adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐺):(Base‘𝐶)⟶(Base‘𝐷))
51 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
5250, 51fvco3d 6928 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐹) ∘ (1st𝐺))‘𝑥) = ((1st𝐹)‘((1st𝐺)‘𝑥)))
5347, 52eqtrd 2768 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑋))‘𝑥) = ((1st𝐹)‘((1st𝐺)‘𝑥)))
5429simprd 495 . . . . . . . . . . 11 (𝜑𝐿 ∈ (𝐶 Func 𝐷))
5554func1st2nd 49201 . . . . . . . . . 10 (𝜑 → (1st𝐿)(𝐶 Func 𝐷)(2nd𝐿))
5634simprd 495 . . . . . . . . . . 11 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
5756func1st2nd 49201 . . . . . . . . . 10 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
58 1st2nd 7977 . . . . . . . . . . . . 13 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
5937, 56, 58sylancr 587 . . . . . . . . . . . 12 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
60 1st2nd 7977 . . . . . . . . . . . . 13 ((Rel (𝐶 Func 𝐷) ∧ 𝐿 ∈ (𝐶 Func 𝐷)) → 𝐿 = ⟨(1st𝐿), (2nd𝐿)⟩)
6140, 54, 60sylancr 587 . . . . . . . . . . . 12 (𝜑𝐿 = ⟨(1st𝐿), (2nd𝐿)⟩)
6259, 61opeq12d 4832 . . . . . . . . . . 11 (𝜑 → ⟨𝐾, 𝐿⟩ = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐿), (2nd𝐿)⟩⟩)
6314, 62eqtrd 2768 . . . . . . . . . 10 (𝜑𝑌 = ⟨⟨(1st𝐾), (2nd𝐾)⟩, ⟨(1st𝐿), (2nd𝐿)⟩⟩)
6410, 55, 57, 63fuco111 49455 . . . . . . . . 9 (𝜑 → (1st ‘(𝑂𝑌)) = ((1st𝐾) ∘ (1st𝐿)))
6564fveq1d 6830 . . . . . . . 8 (𝜑 → ((1st ‘(𝑂𝑌))‘𝑥) = (((1st𝐾) ∘ (1st𝐿))‘𝑥))
6665adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑌))‘𝑥) = (((1st𝐾) ∘ (1st𝐿))‘𝑥))
673, 48, 55funcf1 17775 . . . . . . . . 9 (𝜑 → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
6867adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝐿):(Base‘𝐶)⟶(Base‘𝐷))
6968, 51fvco3d 6928 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝐾) ∘ (1st𝐿))‘𝑥) = ((1st𝐾)‘((1st𝐿)‘𝑥)))
7066, 69eqtrd 2768 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑌))‘𝑥) = ((1st𝐾)‘((1st𝐿)‘𝑥)))
7153, 70opeq12d 4832 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩ = ⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩)
7227natrcl 17862 . . . . . . . . . . . 12 (𝑉 ∈ (𝐿(𝐶 Nat 𝐷)𝑁) → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
7321, 72syl 17 . . . . . . . . . . 11 (𝜑 → (𝐿 ∈ (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)))
7473simprd 495 . . . . . . . . . 10 (𝜑𝑁 ∈ (𝐶 Func 𝐷))
7574func1st2nd 49201 . . . . . . . . 9 (𝜑 → (1st𝑁)(𝐶 Func 𝐷)(2nd𝑁))
7632natrcl 17862 . . . . . . . . . . . 12 (𝑈 ∈ (𝐾(𝐷 Nat 𝐸)𝑀) → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
7722, 76syl 17 . . . . . . . . . . 11 (𝜑 → (𝐾 ∈ (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)))
7877simprd 495 . . . . . . . . . 10 (𝜑𝑀 ∈ (𝐷 Func 𝐸))
7978func1st2nd 49201 . . . . . . . . 9 (𝜑 → (1st𝑀)(𝐷 Func 𝐸)(2nd𝑀))
80 1st2nd 7977 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝑀 ∈ (𝐷 Func 𝐸)) → 𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
8137, 78, 80sylancr 587 . . . . . . . . . . 11 (𝜑𝑀 = ⟨(1st𝑀), (2nd𝑀)⟩)
82 1st2nd 7977 . . . . . . . . . . . 12 ((Rel (𝐶 Func 𝐷) ∧ 𝑁 ∈ (𝐶 Func 𝐷)) → 𝑁 = ⟨(1st𝑁), (2nd𝑁)⟩)
8340, 74, 82sylancr 587 . . . . . . . . . . 11 (𝜑𝑁 = ⟨(1st𝑁), (2nd𝑁)⟩)
8481, 83opeq12d 4832 . . . . . . . . . 10 (𝜑 → ⟨𝑀, 𝑁⟩ = ⟨⟨(1st𝑀), (2nd𝑀)⟩, ⟨(1st𝑁), (2nd𝑁)⟩⟩)
8523, 84eqtrd 2768 . . . . . . . . 9 (𝜑𝑍 = ⟨⟨(1st𝑀), (2nd𝑀)⟩, ⟨(1st𝑁), (2nd𝑁)⟩⟩)
8610, 75, 79, 85fuco111 49455 . . . . . . . 8 (𝜑 → (1st ‘(𝑂𝑍)) = ((1st𝑀) ∘ (1st𝑁)))
8786fveq1d 6830 . . . . . . 7 (𝜑 → ((1st ‘(𝑂𝑍))‘𝑥) = (((1st𝑀) ∘ (1st𝑁))‘𝑥))
8887adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑍))‘𝑥) = (((1st𝑀) ∘ (1st𝑁))‘𝑥))
893, 48, 75funcf1 17775 . . . . . . . 8 (𝜑 → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
9089adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st𝑁):(Base‘𝐶)⟶(Base‘𝐷))
9190, 51fvco3d 6928 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((1st𝑀) ∘ (1st𝑁))‘𝑥) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
9288, 91eqtrd 2768 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(𝑂𝑍))‘𝑥) = ((1st𝑀)‘((1st𝑁)‘𝑥)))
9371, 92oveq12d 7370 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥)) = (⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥))))
9410, 14, 23, 21, 22fuco22a 49475 . . . . . 6 (𝜑 → (𝑈(𝑌𝑃𝑍)𝑉) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))))
9520, 94eqtrd 2768 . . . . 5 (𝜑 → ((𝑌𝑃𝑍)‘𝐵) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))))
96 ovexd 7387 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥))) ∈ V)
9795, 96fvmpt2d 6948 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑌𝑃𝑍)‘𝐵)‘𝑥) = ((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥))))
9810, 13, 14, 11, 12fuco22a 49475 . . . . . 6 (𝜑 → (𝑅(𝑋𝑃𝑌)𝑆) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
999, 98eqtrd 2768 . . . . 5 (𝜑 → ((𝑋𝑃𝑌)‘𝐴) = (𝑥 ∈ (Base‘𝐶) ↦ ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
100 ovexd 7387 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))) ∈ V)
10199, 100fvmpt2d 6948 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝑋𝑃𝑌)‘𝐴)‘𝑥) = ((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))
10293, 97, 101oveq123d 7373 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥)) = (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥)))))
103102mpteq2dva 5186 . 2 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((((𝑌𝑃𝑍)‘𝐵)‘𝑥)(⟨((1st ‘(𝑂𝑋))‘𝑥), ((1st ‘(𝑂𝑌))‘𝑥)⟩(comp‘𝐸)((1st ‘(𝑂𝑍))‘𝑥))(((𝑋𝑃𝑌)‘𝐴)‘𝑥))) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
10426, 103eqtrd 2768 1 (𝜑 → (((𝑌𝑃𝑍)‘𝐵)(⟨(𝑂𝑋), (𝑂𝑌)⟩ (𝑂𝑍))((𝑋𝑃𝑌)‘𝐴)) = (𝑥 ∈ (Base‘𝐶) ↦ (((𝑈‘((1st𝑁)‘𝑥))(⟨((1st𝐾)‘((1st𝐿)‘𝑥)), ((1st𝐾)‘((1st𝑁)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((((1st𝐿)‘𝑥)(2nd𝐾)((1st𝑁)‘𝑥))‘(𝑉𝑥)))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐾)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝑀)‘((1st𝑁)‘𝑥)))((𝑅‘((1st𝐿)‘𝑥))(⟨((1st𝐹)‘((1st𝐺)‘𝑥)), ((1st𝐹)‘((1st𝐿)‘𝑥))⟩(comp‘𝐸)((1st𝐾)‘((1st𝐿)‘𝑥)))((((1st𝐺)‘𝑥)(2nd𝐹)((1st𝐿)‘𝑥))‘(𝑆𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cop 4581  cmpt 5174  ccom 5623  Rel wrel 5624  wf 6482  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17122  compcco 17175   Func cfunc 17763   Nat cnat 17853   FuncCat cfuc 17854  F cfuco 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-func 17767  df-cofu 17769  df-nat 17855  df-fuc 17856  df-fuco 49442
This theorem is referenced by:  fucoco  49482
  Copyright terms: Public domain W3C validator