Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fulltermc2 Structured version   Visualization version   GIF version

Theorem fulltermc2 49182
Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
fulltermc.b 𝐵 = (Base‘𝐶)
fulltermc.h 𝐻 = (Hom ‘𝐶)
fulltermc.d (𝜑𝐷 ∈ TermCat)
fulltermc2.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fulltermc2.x (𝜑𝑋𝐵)
fulltermc2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fulltermc2 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)

Proof of Theorem fulltermc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7406 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
21eqeq1d 2736 . . 3 (𝑥 = 𝑋 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑦) = ∅))
32notbid 318 . 2 (𝑥 = 𝑋 → (¬ (𝑥𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑦) = ∅))
4 oveq2 7407 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
54eqeq1d 2736 . . 3 (𝑦 = 𝑌 → ((𝑋𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅))
65notbid 318 . 2 (𝑦 = 𝑌 → (¬ (𝑋𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑌) = ∅))
7 fulltermc2.f . . 3 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
8 fulltermc.b . . . 4 𝐵 = (Base‘𝐶)
9 fulltermc.h . . . 4 𝐻 = (Hom ‘𝐶)
10 fulltermc.d . . . 4 (𝜑𝐷 ∈ TermCat)
11 eqid 2734 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
128, 11isfull 17910 . . . . . 6 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
137, 12sylib 218 . . . . 5 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
1413simpld 494 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
158, 9, 10, 14fulltermc 49181 . . 3 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
167, 15mpbid 232 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅)
17 fulltermc2.x . 2 (𝜑𝑋𝐵)
18 fulltermc2.y . 2 (𝜑𝑌𝐵)
193, 6, 16, 17, 18rspc2dv 3614 1 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  c0 4306   class class class wbr 5116  ran crn 5652  cfv 6527  (class class class)co 7399  Basecbs 17213  Hom chom 17267   Func cfunc 17852   Full cful 17902  TermCatctermc 49143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-map 8836  df-ixp 8906  df-cat 17665  df-cid 17666  df-func 17856  df-full 17904  df-thinc 49091  df-termc 49144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator