| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc2 | Structured version Visualization version GIF version | ||
| Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| fulltermc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| fulltermc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fulltermc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fulltermc2 | ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7436 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
| 2 | 1 | eqeq1d 2738 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑦) = ∅)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑥 = 𝑋 → (¬ (𝑥𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑦) = ∅)) |
| 4 | oveq2 7437 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 5 | 4 | eqeq1d 2738 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
| 6 | 5 | notbid 318 | . 2 ⊢ (𝑦 = 𝑌 → (¬ (𝑋𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑌) = ∅)) |
| 7 | fulltermc2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
| 8 | fulltermc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 9 | fulltermc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 10 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 11 | eqid 2736 | . . . . . . 7 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 12 | 8, 11 | isfull 17953 | . . . . . 6 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
| 13 | 7, 12 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 15 | 8, 9, 10, 14 | fulltermc 49116 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| 16 | 7, 15 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅) |
| 17 | fulltermc2.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | fulltermc2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 19 | 3, 6, 16, 17, 18 | rspc2dv 3636 | 1 ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3060 ∅c0 4332 class class class wbr 5141 ran crn 5684 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Hom chom 17304 Func cfunc 17895 Full cful 17945 TermCatctermc 49092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-1st 8010 df-2nd 8011 df-map 8864 df-ixp 8934 df-cat 17707 df-cid 17708 df-func 17899 df-full 17947 df-thinc 49041 df-termc 49093 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |