| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc2 | Structured version Visualization version GIF version | ||
| Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.) (Proof shortened by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| fulltermc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| fulltermc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fulltermc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fulltermc2 | ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
| 2 | 1 | eqeq1d 2733 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑦) = ∅)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑥 = 𝑋 → (¬ (𝑥𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑦) = ∅)) |
| 4 | oveq2 7349 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 5 | 4 | eqeq1d 2733 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
| 6 | 5 | notbid 318 | . 2 ⊢ (𝑦 = 𝑌 → (¬ (𝑋𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑌) = ∅)) |
| 7 | fulltermc2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
| 8 | fulltermc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 9 | fulltermc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 10 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 11 | fullfunc 17810 | . . . . . 6 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 12 | 11 | ssbri 5131 | . . . . 5 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 13 | 7, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 14 | 8, 9, 10, 13 | fulltermc 49543 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| 15 | 7, 14 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅) |
| 16 | fulltermc2.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 17 | fulltermc2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 18 | 3, 6, 15, 16, 17 | rspc2dv 3587 | 1 ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Hom chom 17167 Func cfunc 17756 Full cful 17806 TermCatctermc 49504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-ixp 8817 df-cat 17569 df-cid 17570 df-func 17760 df-full 17808 df-thinc 49450 df-termc 49505 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |