| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fulltermc2 | Structured version Visualization version GIF version | ||
| Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| fulltermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| fulltermc.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| fulltermc.d | ⊢ (𝜑 → 𝐷 ∈ TermCat) |
| fulltermc2.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| fulltermc2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fulltermc2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| fulltermc2 | ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7406 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
| 2 | 1 | eqeq1d 2736 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑦) = ∅)) |
| 3 | 2 | notbid 318 | . 2 ⊢ (𝑥 = 𝑋 → (¬ (𝑥𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑦) = ∅)) |
| 4 | oveq2 7407 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
| 5 | 4 | eqeq1d 2736 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅)) |
| 6 | 5 | notbid 318 | . 2 ⊢ (𝑦 = 𝑌 → (¬ (𝑋𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑌) = ∅)) |
| 7 | fulltermc2.f | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
| 8 | fulltermc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 9 | fulltermc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 10 | fulltermc.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ TermCat) | |
| 11 | eqid 2734 | . . . . . . 7 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 12 | 8, 11 | isfull 17910 | . . . . . 6 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
| 13 | 7, 12 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 15 | 8, 9, 10, 14 | fulltermc 49181 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) |
| 16 | 7, 15 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅) |
| 17 | fulltermc2.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 18 | fulltermc2.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 19 | 3, 6, 16, 17, 18 | rspc2dv 3614 | 1 ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∅c0 4306 class class class wbr 5116 ran crn 5652 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 Hom chom 17267 Func cfunc 17852 Full cful 17902 TermCatctermc 49143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-map 8836 df-ixp 8906 df-cat 17665 df-cid 17666 df-func 17856 df-full 17904 df-thinc 49091 df-termc 49144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |