Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fulltermc2 Structured version   Visualization version   GIF version

Theorem fulltermc2 49673
Description: Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.) (Proof shortened by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
fulltermc.b 𝐵 = (Base‘𝐶)
fulltermc.h 𝐻 = (Hom ‘𝐶)
fulltermc.d (𝜑𝐷 ∈ TermCat)
fulltermc2.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
fulltermc2.x (𝜑𝑋𝐵)
fulltermc2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fulltermc2 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)

Proof of Theorem fulltermc2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7362 . . . 4 (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦))
21eqeq1d 2735 . . 3 (𝑥 = 𝑋 → ((𝑥𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑦) = ∅))
32notbid 318 . 2 (𝑥 = 𝑋 → (¬ (𝑥𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑦) = ∅))
4 oveq2 7363 . . . 4 (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌))
54eqeq1d 2735 . . 3 (𝑦 = 𝑌 → ((𝑋𝐻𝑦) = ∅ ↔ (𝑋𝐻𝑌) = ∅))
65notbid 318 . 2 (𝑦 = 𝑌 → (¬ (𝑋𝐻𝑦) = ∅ ↔ ¬ (𝑋𝐻𝑌) = ∅))
7 fulltermc2.f . . 3 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
8 fulltermc.b . . . 4 𝐵 = (Base‘𝐶)
9 fulltermc.h . . . 4 𝐻 = (Hom ‘𝐶)
10 fulltermc.d . . . 4 (𝜑𝐷 ∈ TermCat)
11 fullfunc 17823 . . . . . 6 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
1211ssbri 5140 . . . . 5 (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
137, 12syl 17 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
148, 9, 10, 13fulltermc 49672 . . 3 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅))
157, 14mpbid 232 . 2 (𝜑 → ∀𝑥𝐵𝑦𝐵 ¬ (𝑥𝐻𝑦) = ∅)
16 fulltermc2.x . 2 (𝜑𝑋𝐵)
17 fulltermc2.y . 2 (𝜑𝑌𝐵)
183, 6, 15, 16, 17rspc2dv 3588 1 (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  wral 3048  c0 4282   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179   Func cfunc 17769   Full cful 17819  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8832  df-cat 17582  df-cid 17583  df-func 17773  df-full 17821  df-thinc 49579  df-termc 49634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator