MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdwrdsymb Structured version   Visualization version   GIF version

Theorem swrdwrdsymb 14012
Description: A subword is a word over the symbols it consists of. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdwrdsymb (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))

Proof of Theorem swrdwrdsymb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdval2 13996 . . . . 5 ((𝑆 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))
213expb 1112 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))
3 wrdf 13854 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
43ffund 6511 . . . . . . . . . 10 (𝑆 ∈ Word 𝐴 → Fun 𝑆)
54adantr 481 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → Fun 𝑆)
65adantr 481 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → Fun 𝑆)
7 wrddm 13856 . . . . . . . . . 10 (𝑆 ∈ Word 𝐴 → dom 𝑆 = (0..^(♯‘𝑆)))
8 elfzodifsumelfzo 13091 . . . . . . . . . . . . . 14 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
98imp 407 . . . . . . . . . . . . 13 (((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆)))
109adantl 482 . . . . . . . . . . . 12 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆)))
11 eleq2 2898 . . . . . . . . . . . . 13 (dom 𝑆 = (0..^(♯‘𝑆)) → ((𝑥 + 𝑀) ∈ dom 𝑆 ↔ (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
1211adantr 481 . . . . . . . . . . . 12 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → ((𝑥 + 𝑀) ∈ dom 𝑆 ↔ (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
1310, 12mpbird 258 . . . . . . . . . . 11 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → (𝑥 + 𝑀) ∈ dom 𝑆)
1413exp32 421 . . . . . . . . . 10 (dom 𝑆 = (0..^(♯‘𝑆)) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ dom 𝑆)))
157, 14syl 17 . . . . . . . . 9 (𝑆 ∈ Word 𝐴 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ dom 𝑆)))
1615imp31 418 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ dom 𝑆)
17 simpr 485 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑥 ∈ (0..^(𝑁𝑀)))
18 elfzelz 12896 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝑆)) → 𝑁 ∈ ℤ)
1918adantl 482 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → 𝑁 ∈ ℤ)
2019adantl 482 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → 𝑁 ∈ ℤ)
2120adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
22 elfzelz 12896 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
2322ad2antrl 724 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → 𝑀 ∈ ℤ)
2423adantr 481 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
25 fzoaddel2 13081 . . . . . . . . 9 ((𝑥 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2617, 21, 24, 25syl3anc 1363 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
27 funfvima 6983 . . . . . . . . 9 ((Fun 𝑆 ∧ (𝑥 + 𝑀) ∈ dom 𝑆) → ((𝑥 + 𝑀) ∈ (𝑀..^𝑁) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁))))
2827imp 407 . . . . . . . 8 (((Fun 𝑆 ∧ (𝑥 + 𝑀) ∈ dom 𝑆) ∧ (𝑥 + 𝑀) ∈ (𝑀..^𝑁)) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁)))
296, 16, 26, 28syl21anc 833 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁)))
3029fmpttd 6871 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁)))
31 fvex 6676 . . . . . . . . . . . 12 (𝑆‘(𝑥 + 𝑀)) ∈ V
32 eqid 2818 . . . . . . . . . . . 12 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))
3331, 32fnmpti 6484 . . . . . . . . . . 11 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) Fn (0..^(𝑁𝑀))
34 hashfn 13724 . . . . . . . . . . 11 ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) Fn (0..^(𝑁𝑀)) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (♯‘(0..^(𝑁𝑀))))
3533, 34mp1i 13 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (♯‘(0..^(𝑁𝑀))))
36 fznn0sub 12927 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
37 hashfzo0 13779 . . . . . . . . . . 11 ((𝑁𝑀) ∈ ℕ0 → (♯‘(0..^(𝑁𝑀))) = (𝑁𝑀))
3836, 37syl 17 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → (♯‘(0..^(𝑁𝑀))) = (𝑁𝑀))
3935, 38eqtrd 2853 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (𝑁𝑀))
4039oveq2d 7161 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))) = (0..^(𝑁𝑀)))
4140feq2d 6493 . . . . . . 7 (𝑀 ∈ (0...𝑁) → ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁))))
4241ad2antrl 724 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁))))
4330, 42mpbird 258 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)))
44 iswrdb 13855 . . . . 5 ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) ∈ Word (𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)))
4543, 44sylibr 235 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) ∈ Word (𝑆 “ (𝑀..^𝑁)))
462, 45eqeltrd 2910 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
4746expcom 414 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁))))
48 swrdnd0 14007 . . 3 (𝑆 ∈ Word 𝐴 → (¬ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = ∅))
49 wrd0 13877 . . . 4 ∅ ∈ Word (𝑆 “ (𝑀..^𝑁))
50 eleq1 2897 . . . 4 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → ((𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)) ↔ ∅ ∈ Word (𝑆 “ (𝑀..^𝑁))))
5149, 50mpbiri 259 . . 3 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
5248, 51syl6com 37 . 2 (¬ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁))))
5347, 52pm2.61i 183 1 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  c0 4288  cop 4563  cmpt 5137  dom cdm 5548  cima 5551  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  0cc0 10525   + caddc 10528  cmin 10858  0cn0 11885  cz 11969  ...cfz 12880  ..^cfzo 13021  chash 13678  Word cword 13849   substr csubstr 13990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-substr 13991
This theorem is referenced by:  pfxwrdsymb  14039
  Copyright terms: Public domain W3C validator