Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdwrdsymb Structured version   Visualization version   GIF version

Theorem swrdwrdsymb 13736
 Description: A subword is a word over the symbols it consists of. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdwrdsymb (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))

Proof of Theorem swrdwrdsymb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdval2 13706 . . . . 5 ((𝑆 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))
213expb 1155 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))
3 wrdf 13579 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
43ffund 6282 . . . . . . . . . 10 (𝑆 ∈ Word 𝐴 → Fun 𝑆)
54adantr 474 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → Fun 𝑆)
65adantr 474 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → Fun 𝑆)
7 wrddm 13581 . . . . . . . . . 10 (𝑆 ∈ Word 𝐴 → dom 𝑆 = (0..^(♯‘𝑆)))
8 elfzodifsumelfzo 12829 . . . . . . . . . . . . . 14 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
98imp 397 . . . . . . . . . . . . 13 (((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆)))
109adantl 475 . . . . . . . . . . . 12 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆)))
11 eleq2 2895 . . . . . . . . . . . . 13 (dom 𝑆 = (0..^(♯‘𝑆)) → ((𝑥 + 𝑀) ∈ dom 𝑆 ↔ (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
1211adantr 474 . . . . . . . . . . . 12 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → ((𝑥 + 𝑀) ∈ dom 𝑆 ↔ (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
1310, 12mpbird 249 . . . . . . . . . . 11 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → (𝑥 + 𝑀) ∈ dom 𝑆)
1413exp32 413 . . . . . . . . . 10 (dom 𝑆 = (0..^(♯‘𝑆)) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ dom 𝑆)))
157, 14syl 17 . . . . . . . . 9 (𝑆 ∈ Word 𝐴 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ dom 𝑆)))
1615imp31 410 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ dom 𝑆)
17 simpr 479 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑥 ∈ (0..^(𝑁𝑀)))
18 elfzelz 12635 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝑆)) → 𝑁 ∈ ℤ)
1918adantl 475 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → 𝑁 ∈ ℤ)
2019adantl 475 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → 𝑁 ∈ ℤ)
2120adantr 474 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
22 elfzelz 12635 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
2322ad2antrl 721 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → 𝑀 ∈ ℤ)
2423adantr 474 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
25 fzoaddel2 12819 . . . . . . . . 9 ((𝑥 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2617, 21, 24, 25syl3anc 1496 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
27 funfvima 6748 . . . . . . . . 9 ((Fun 𝑆 ∧ (𝑥 + 𝑀) ∈ dom 𝑆) → ((𝑥 + 𝑀) ∈ (𝑀..^𝑁) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁))))
2827imp 397 . . . . . . . 8 (((Fun 𝑆 ∧ (𝑥 + 𝑀) ∈ dom 𝑆) ∧ (𝑥 + 𝑀) ∈ (𝑀..^𝑁)) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁)))
296, 16, 26, 28syl21anc 873 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁)))
30 eqid 2825 . . . . . . 7 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))
3129, 30fmptd 6633 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁)))
32 fvex 6446 . . . . . . . . . . . 12 (𝑆‘(𝑥 + 𝑀)) ∈ V
3332, 30fnmpti 6255 . . . . . . . . . . 11 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) Fn (0..^(𝑁𝑀))
34 hashfn 13454 . . . . . . . . . . 11 ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) Fn (0..^(𝑁𝑀)) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (♯‘(0..^(𝑁𝑀))))
3533, 34mp1i 13 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (♯‘(0..^(𝑁𝑀))))
36 fznn0sub 12666 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
37 hashfzo0 13506 . . . . . . . . . . 11 ((𝑁𝑀) ∈ ℕ0 → (♯‘(0..^(𝑁𝑀))) = (𝑁𝑀))
3836, 37syl 17 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → (♯‘(0..^(𝑁𝑀))) = (𝑁𝑀))
3935, 38eqtrd 2861 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (𝑁𝑀))
4039oveq2d 6921 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))) = (0..^(𝑁𝑀)))
4140feq2d 6264 . . . . . . 7 (𝑀 ∈ (0...𝑁) → ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁))))
4241ad2antrl 721 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁))))
4331, 42mpbird 249 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)))
44 iswrdb 13580 . . . . 5 ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) ∈ Word (𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)))
4543, 44sylibr 226 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) ∈ Word (𝑆 “ (𝑀..^𝑁)))
462, 45eqeltrd 2906 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
4746expcom 404 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁))))
48 swrdnd0 13722 . . 3 (𝑆 ∈ Word 𝐴 → (¬ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = ∅))
49 wrd0 13599 . . . . 5 ∅ ∈ Word (𝑆 “ (𝑀..^𝑁))
5049a1i 11 . . . 4 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → ∅ ∈ Word (𝑆 “ (𝑀..^𝑁)))
51 eleq1 2894 . . . 4 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → ((𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)) ↔ ∅ ∈ Word (𝑆 “ (𝑀..^𝑁))))
5250, 51mpbird 249 . . 3 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
5348, 52syl6com 37 . 2 (¬ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁))))
5447, 53pm2.61i 177 1 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1658   ∈ wcel 2166  ∅c0 4144  ⟨cop 4403   ↦ cmpt 4952  dom cdm 5342   “ cima 5345  Fun wfun 6117   Fn wfn 6118  ⟶wf 6119  ‘cfv 6123  (class class class)co 6905  0cc0 10252   + caddc 10255   − cmin 10585  ℕ0cn0 11618  ℤcz 11704  ...cfz 12619  ..^cfzo 12760  ♯chash 13410  Word cword 13574   substr csubstr 13700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-substr 13701 This theorem is referenced by:  pfxwrdsymb  13768
 Copyright terms: Public domain W3C validator