MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdwrdsymb Structured version   Visualization version   GIF version

Theorem swrdwrdsymb 13736
Description: A subword is a word over the symbols it consists of. (Contributed by AV, 2-Dec-2022.)
Assertion
Ref Expression
swrdwrdsymb (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))

Proof of Theorem swrdwrdsymb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 swrdval2 13706 . . . . 5 ((𝑆 ∈ Word 𝐴𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))
213expb 1155 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))
3 wrdf 13579 . . . . . . . . . . 11 (𝑆 ∈ Word 𝐴𝑆:(0..^(♯‘𝑆))⟶𝐴)
43ffund 6282 . . . . . . . . . 10 (𝑆 ∈ Word 𝐴 → Fun 𝑆)
54adantr 474 . . . . . . . . 9 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → Fun 𝑆)
65adantr 474 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → Fun 𝑆)
7 wrddm 13581 . . . . . . . . . 10 (𝑆 ∈ Word 𝐴 → dom 𝑆 = (0..^(♯‘𝑆)))
8 elfzodifsumelfzo 12829 . . . . . . . . . . . . . 14 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
98imp 397 . . . . . . . . . . . . 13 (((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆)))
109adantl 475 . . . . . . . . . . . 12 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆)))
11 eleq2 2895 . . . . . . . . . . . . 13 (dom 𝑆 = (0..^(♯‘𝑆)) → ((𝑥 + 𝑀) ∈ dom 𝑆 ↔ (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
1211adantr 474 . . . . . . . . . . . 12 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → ((𝑥 + 𝑀) ∈ dom 𝑆 ↔ (𝑥 + 𝑀) ∈ (0..^(♯‘𝑆))))
1310, 12mpbird 249 . . . . . . . . . . 11 ((dom 𝑆 = (0..^(♯‘𝑆)) ∧ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) ∧ 𝑥 ∈ (0..^(𝑁𝑀)))) → (𝑥 + 𝑀) ∈ dom 𝑆)
1413exp32 413 . . . . . . . . . 10 (dom 𝑆 = (0..^(♯‘𝑆)) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ dom 𝑆)))
157, 14syl 17 . . . . . . . . 9 (𝑆 ∈ Word 𝐴 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑥 ∈ (0..^(𝑁𝑀)) → (𝑥 + 𝑀) ∈ dom 𝑆)))
1615imp31 410 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ dom 𝑆)
17 simpr 479 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑥 ∈ (0..^(𝑁𝑀)))
18 elfzelz 12635 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝑆)) → 𝑁 ∈ ℤ)
1918adantl 475 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → 𝑁 ∈ ℤ)
2019adantl 475 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → 𝑁 ∈ ℤ)
2120adantr 474 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑁 ∈ ℤ)
22 elfzelz 12635 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
2322ad2antrl 721 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → 𝑀 ∈ ℤ)
2423adantr 474 . . . . . . . . 9 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → 𝑀 ∈ ℤ)
25 fzoaddel2 12819 . . . . . . . . 9 ((𝑥 ∈ (0..^(𝑁𝑀)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
2617, 21, 24, 25syl3anc 1496 . . . . . . . 8 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑥 + 𝑀) ∈ (𝑀..^𝑁))
27 funfvima 6748 . . . . . . . . 9 ((Fun 𝑆 ∧ (𝑥 + 𝑀) ∈ dom 𝑆) → ((𝑥 + 𝑀) ∈ (𝑀..^𝑁) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁))))
2827imp 397 . . . . . . . 8 (((Fun 𝑆 ∧ (𝑥 + 𝑀) ∈ dom 𝑆) ∧ (𝑥 + 𝑀) ∈ (𝑀..^𝑁)) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁)))
296, 16, 26, 28syl21anc 873 . . . . . . 7 (((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) ∧ 𝑥 ∈ (0..^(𝑁𝑀))) → (𝑆‘(𝑥 + 𝑀)) ∈ (𝑆 “ (𝑀..^𝑁)))
30 eqid 2825 . . . . . . 7 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) = (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))
3129, 30fmptd 6633 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁)))
32 fvex 6446 . . . . . . . . . . . 12 (𝑆‘(𝑥 + 𝑀)) ∈ V
3332, 30fnmpti 6255 . . . . . . . . . . 11 (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) Fn (0..^(𝑁𝑀))
34 hashfn 13454 . . . . . . . . . . 11 ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) Fn (0..^(𝑁𝑀)) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (♯‘(0..^(𝑁𝑀))))
3533, 34mp1i 13 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (♯‘(0..^(𝑁𝑀))))
36 fznn0sub 12666 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → (𝑁𝑀) ∈ ℕ0)
37 hashfzo0 13506 . . . . . . . . . . 11 ((𝑁𝑀) ∈ ℕ0 → (♯‘(0..^(𝑁𝑀))) = (𝑁𝑀))
3836, 37syl 17 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → (♯‘(0..^(𝑁𝑀))) = (𝑁𝑀))
3935, 38eqtrd 2861 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → (♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))) = (𝑁𝑀))
4039oveq2d 6921 . . . . . . . 8 (𝑀 ∈ (0...𝑁) → (0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))))) = (0..^(𝑁𝑀)))
4140feq2d 6264 . . . . . . 7 (𝑀 ∈ (0...𝑁) → ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁))))
4241ad2antrl 721 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(𝑁𝑀))⟶(𝑆 “ (𝑀..^𝑁))))
4331, 42mpbird 249 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)))
44 iswrdb 13580 . . . . 5 ((𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) ∈ Word (𝑆 “ (𝑀..^𝑁)) ↔ (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))):(0..^(♯‘(𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀)))))⟶(𝑆 “ (𝑀..^𝑁)))
4543, 44sylibr 226 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑥 ∈ (0..^(𝑁𝑀)) ↦ (𝑆‘(𝑥 + 𝑀))) ∈ Word (𝑆 “ (𝑀..^𝑁)))
462, 45eqeltrd 2906 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
4746expcom 404 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁))))
48 swrdnd0 13722 . . 3 (𝑆 ∈ Word 𝐴 → (¬ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 substr ⟨𝑀, 𝑁⟩) = ∅))
49 wrd0 13599 . . . . 5 ∅ ∈ Word (𝑆 “ (𝑀..^𝑁))
5049a1i 11 . . . 4 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → ∅ ∈ Word (𝑆 “ (𝑀..^𝑁)))
51 eleq1 2894 . . . 4 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → ((𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)) ↔ ∅ ∈ Word (𝑆 “ (𝑀..^𝑁))))
5250, 51mpbird 249 . . 3 ((𝑆 substr ⟨𝑀, 𝑁⟩) = ∅ → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
5348, 52syl6com 37 . 2 (¬ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑆))) → (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁))))
5447, 53pm2.61i 177 1 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨𝑀, 𝑁⟩) ∈ Word (𝑆 “ (𝑀..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  c0 4144  cop 4403  cmpt 4952  dom cdm 5342  cima 5345  Fun wfun 6117   Fn wfn 6118  wf 6119  cfv 6123  (class class class)co 6905  0cc0 10252   + caddc 10255  cmin 10585  0cn0 11618  cz 11704  ...cfz 12619  ..^cfzo 12760  chash 13410  Word cword 13574   substr csubstr 13700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-substr 13701
This theorem is referenced by:  pfxwrdsymb  13768
  Copyright terms: Public domain W3C validator