| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fprodefsum.2 | . . . 4
⊢ (𝜑 → 𝑁 ∈ 𝑍) | 
| 2 |  | fprodefsum.1 | . . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 3 | 1, 2 | eleqtrdi 2851 | . . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 4 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀)) | 
| 5 | 4 | prodeq1d 15956 | . . . . . 6
⊢ (𝑎 = 𝑀 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) | 
| 6 | 4 | sumeq1d 15736 | . . . . . . 7
⊢ (𝑎 = 𝑀 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | 
| 7 | 6 | fveq2d 6910 | . . . . . 6
⊢ (𝑎 = 𝑀 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 8 | 5, 7 | eqeq12d 2753 | . . . . 5
⊢ (𝑎 = 𝑀 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) | 
| 9 | 8 | imbi2d 340 | . . . 4
⊢ (𝑎 = 𝑀 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 10 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛)) | 
| 11 | 10 | prodeq1d 15956 | . . . . . 6
⊢ (𝑎 = 𝑛 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) | 
| 12 | 10 | sumeq1d 15736 | . . . . . . 7
⊢ (𝑎 = 𝑛 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | 
| 13 | 12 | fveq2d 6910 | . . . . . 6
⊢ (𝑎 = 𝑛 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 14 | 11, 13 | eqeq12d 2753 | . . . . 5
⊢ (𝑎 = 𝑛 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) | 
| 15 | 14 | imbi2d 340 | . . . 4
⊢ (𝑎 = 𝑛 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 16 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1))) | 
| 17 | 16 | prodeq1d 15956 | . . . . . 6
⊢ (𝑎 = (𝑛 + 1) → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) | 
| 18 | 16 | sumeq1d 15736 | . . . . . . 7
⊢ (𝑎 = (𝑛 + 1) → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | 
| 19 | 18 | fveq2d 6910 | . . . . . 6
⊢ (𝑎 = (𝑛 + 1) → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 20 | 17, 19 | eqeq12d 2753 | . . . . 5
⊢ (𝑎 = (𝑛 + 1) → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) | 
| 21 | 20 | imbi2d 340 | . . . 4
⊢ (𝑎 = (𝑛 + 1) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 22 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁)) | 
| 23 | 22 | prodeq1d 15956 | . . . . . 6
⊢ (𝑎 = 𝑁 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) | 
| 24 | 22 | sumeq1d 15736 | . . . . . . 7
⊢ (𝑎 = 𝑁 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | 
| 25 | 24 | fveq2d 6910 | . . . . . 6
⊢ (𝑎 = 𝑁 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 26 | 23, 25 | eqeq12d 2753 | . . . . 5
⊢ (𝑎 = 𝑁 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) | 
| 27 | 26 | imbi2d 340 | . . . 4
⊢ (𝑎 = 𝑁 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 28 |  | fzsn 13606 | . . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | 
| 29 | 28 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀}) | 
| 30 | 29 | prodeq1d 15956 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) | 
| 31 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | 
| 32 |  | uzid 12893 | . . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) | 
| 33 | 32, 2 | eleqtrrdi 2852 | . . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ 𝑍) | 
| 34 |  | fprodefsum.3 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | 
| 35 |  | efcl 16118 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) ∈
ℂ) | 
| 36 | 34, 35 | syl 17 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (exp‘𝐴) ∈ ℂ) | 
| 37 | 36 | fmpttd 7135 | . . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (exp‘𝐴)):𝑍⟶ℂ) | 
| 38 | 37 | ffvelcdmda 7104 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) | 
| 39 | 33, 38 | sylan2 593 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) | 
| 40 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀)) | 
| 41 | 40 | prodsn 15998 | . . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) → ∏𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀)) | 
| 42 | 31, 39, 41 | syl2anc 584 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀)) | 
| 43 | 33 | adantl 481 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ 𝑍) | 
| 44 |  | fvex 6919 | . . . . . . . 8
⊢
(exp‘⦋𝑀 / 𝑘⦌𝐴) ∈ V | 
| 45 |  | nfcv 2905 | . . . . . . . . 9
⊢
Ⅎ𝑘𝑀 | 
| 46 |  | nfcv 2905 | . . . . . . . . . 10
⊢
Ⅎ𝑘exp | 
| 47 |  | nfcsb1v 3923 | . . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐴 | 
| 48 | 46, 47 | nffv 6916 | . . . . . . . . 9
⊢
Ⅎ𝑘(exp‘⦋𝑀 / 𝑘⦌𝐴) | 
| 49 |  | csbeq1a 3913 | . . . . . . . . . 10
⊢ (𝑘 = 𝑀 → 𝐴 = ⦋𝑀 / 𝑘⦌𝐴) | 
| 50 | 49 | fveq2d 6910 | . . . . . . . . 9
⊢ (𝑘 = 𝑀 → (exp‘𝐴) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) | 
| 51 |  | eqid 2737 | . . . . . . . . 9
⊢ (𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) = (𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) | 
| 52 | 45, 48, 50, 51 | fvmptf 7037 | . . . . . . . 8
⊢ ((𝑀 ∈ 𝑍 ∧ (exp‘⦋𝑀 / 𝑘⦌𝐴) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) | 
| 53 | 43, 44, 52 | sylancl 586 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) | 
| 54 | 30, 42, 53 | 3eqtrd 2781 | . . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) | 
| 55 | 29 | sumeq1d 15736 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | 
| 56 | 34 | fmpttd 7135 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) | 
| 57 | 56 | ffvelcdmda 7104 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) ∈ ℂ) | 
| 58 | 33, 57 | sylan2 593 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) ∈ ℂ) | 
| 59 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑚 = 𝑀 → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀)) | 
| 60 | 59 | sumsn 15782 | . . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) ∈ ℂ) → Σ𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀)) | 
| 61 | 31, 58, 60 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀)) | 
| 62 | 34 | ralrimiva 3146 | . . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) | 
| 63 | 47 | nfel1 2922 | . . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ | 
| 64 | 49 | eleq1d 2826 | . . . . . . . . . . . 12
⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ)) | 
| 65 | 63, 64 | rspc 3610 | . . . . . . . . . . 11
⊢ (𝑀 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ)) | 
| 66 | 65 | impcom 407 | . . . . . . . . . 10
⊢
((∀𝑘 ∈
𝑍 𝐴 ∈ ℂ ∧ 𝑀 ∈ 𝑍) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) | 
| 67 | 62, 33, 66 | syl2an 596 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) | 
| 68 |  | eqid 2737 | . . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) | 
| 69 | 68 | fvmpts 7019 | . . . . . . . . 9
⊢ ((𝑀 ∈ 𝑍 ∧ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) = ⦋𝑀 / 𝑘⦌𝐴) | 
| 70 | 43, 67, 69 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) = ⦋𝑀 / 𝑘⦌𝐴) | 
| 71 | 55, 61, 70 | 3eqtrd 2781 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ⦋𝑀 / 𝑘⦌𝐴) | 
| 72 | 71 | fveq2d 6910 | . . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) →
(exp‘Σ𝑚 ∈
(𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) | 
| 73 | 54, 72 | eqtr4d 2780 | . . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 74 | 73 | expcom 413 | . . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) | 
| 75 |  | simp3 1139 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 76 | 2 | peano2uzs 12944 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 → (𝑛 + 1) ∈ 𝑍) | 
| 77 |  | simpr 484 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) ∈ 𝑍) | 
| 78 |  | nfcsb1v 3923 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋(𝑛 + 1) / 𝑘⦌𝐴 | 
| 79 | 78 | nfel1 2922 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ | 
| 80 |  | csbeq1a 3913 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑛 + 1) → 𝐴 = ⦋(𝑛 + 1) / 𝑘⦌𝐴) | 
| 81 | 80 | eleq1d 2826 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ)) | 
| 82 | 79, 81 | rspc 3610 | . . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ)) | 
| 83 | 62, 82 | mpan9 506 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ) | 
| 84 |  | efcl 16118 | . . . . . . . . . . . . . . 15
⊢
(⦋(𝑛 +
1) / 𝑘⦌𝐴 ∈ ℂ →
(exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) ∈ ℂ) | 
| 85 | 83, 84 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) ∈ ℂ) | 
| 86 |  | nfcv 2905 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑛 + 1) | 
| 87 | 46, 78 | nffv 6916 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) | 
| 88 | 80 | fveq2d 6910 | . . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → (exp‘𝐴) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) | 
| 89 | 86, 87, 88, 51 | fvmptf 7037 | . . . . . . . . . . . . . 14
⊢ (((𝑛 + 1) ∈ 𝑍 ∧ (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) | 
| 90 | 77, 85, 89 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) | 
| 91 | 68 | fvmpts 7019 | . . . . . . . . . . . . . . 15
⊢ (((𝑛 + 1) ∈ 𝑍 ∧ ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) = ⦋(𝑛 + 1) / 𝑘⦌𝐴) | 
| 92 | 77, 83, 91 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) = ⦋(𝑛 + 1) / 𝑘⦌𝐴) | 
| 93 | 92 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) | 
| 94 | 90, 93 | eqtr4d 2780 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) | 
| 95 | 76, 94 | sylan2 593 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) | 
| 96 | 95 | 3adant3 1133 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) | 
| 97 | 75, 96 | oveq12d 7449 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) | 
| 98 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) | 
| 99 | 98, 2 | eleqtrdi 2851 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 100 |  | elfzuz 13560 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚 ∈ (ℤ≥‘𝑀)) | 
| 101 | 100, 2 | eleqtrrdi 2852 | . . . . . . . . . . . . 13
⊢ (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚 ∈ 𝑍) | 
| 102 | 37 | ffvelcdmda 7104 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ) | 
| 103 | 101, 102 | sylan2 593 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ) | 
| 104 | 103 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ) | 
| 105 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))) | 
| 106 | 99, 104, 105 | fprodp1 16005 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)))) | 
| 107 | 106 | 3adant3 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)))) | 
| 108 | 56 | ffvelcdmda 7104 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) | 
| 109 | 101, 108 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) | 
| 110 | 109 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) | 
| 111 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))) | 
| 112 | 99, 110, 111 | fsump1 15792 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) | 
| 113 | 112 | fveq2d 6910 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) | 
| 114 |  | fzfid 14014 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀...𝑛) ∈ Fin) | 
| 115 |  | elfzuz 13560 | . . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (𝑀...𝑛) → 𝑚 ∈ (ℤ≥‘𝑀)) | 
| 116 | 115, 2 | eleqtrrdi 2852 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (𝑀...𝑛) → 𝑚 ∈ 𝑍) | 
| 117 | 116, 108 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑛)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) | 
| 118 | 117 | adantlr 715 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑛)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) | 
| 119 | 114, 118 | fsumcl 15769 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) | 
| 120 | 56 | ffvelcdmda 7104 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) ∈ ℂ) | 
| 121 | 76, 120 | sylan2 593 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) ∈ ℂ) | 
| 122 |  | efadd 16130 | . . . . . . . . . . . 12
⊢
((Σ𝑚 ∈
(𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ ∧ ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) ∈ ℂ) →
(exp‘(Σ𝑚 ∈
(𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) | 
| 123 | 119, 121,
122 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) | 
| 124 | 113, 123 | eqtrd 2777 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) | 
| 125 | 124 | 3adant3 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) | 
| 126 | 97, 107, 125 | 3eqtr4d 2787 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 127 | 126 | 3exp 1120 | . . . . . . 7
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 128 | 127 | com12 32 | . . . . . 6
⊢ (𝑛 ∈ 𝑍 → (𝜑 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 129 | 128 | a2d 29 | . . . . 5
⊢ (𝑛 ∈ 𝑍 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 130 | 2 | eqcomi 2746 | . . . . 5
⊢
(ℤ≥‘𝑀) = 𝑍 | 
| 131 | 129, 130 | eleq2s 2859 | . . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) | 
| 132 | 9, 15, 21, 27, 74, 131 | uzind4 12948 | . . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) | 
| 133 | 3, 132 | mpcom 38 | . 2
⊢ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) | 
| 134 |  | fvres 6925 | . . . . 5
⊢ (𝑚 ∈ (𝑀...𝑁) → (((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) | 
| 135 |  | fzssuz 13605 | . . . . . . . 8
⊢ (𝑀...𝑁) ⊆
(ℤ≥‘𝑀) | 
| 136 | 135, 2 | sseqtrri 4033 | . . . . . . 7
⊢ (𝑀...𝑁) ⊆ 𝑍 | 
| 137 |  | resmpt 6055 | . . . . . . 7
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))) | 
| 138 | 136, 137 | ax-mp 5 | . . . . . 6
⊢ ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴)) | 
| 139 | 138 | fveq1i 6907 | . . . . 5
⊢ (((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) | 
| 140 | 134, 139 | eqtr3di 2792 | . . . 4
⊢ (𝑚 ∈ (𝑀...𝑁) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)) | 
| 141 | 140 | prodeq2i 15954 | . . 3
⊢
∏𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) | 
| 142 |  | prodfc 15981 | . . 3
⊢
∏𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) | 
| 143 | 141, 142 | eqtri 2765 | . 2
⊢
∏𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) | 
| 144 |  | fvres 6925 | . . . . . 6
⊢ (𝑚 ∈ (𝑀...𝑁) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) | 
| 145 |  | resmpt 6055 | . . . . . . . 8
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) | 
| 146 | 136, 145 | ax-mp 5 | . . . . . . 7
⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) | 
| 147 | 146 | fveq1i 6907 | . . . . . 6
⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) | 
| 148 | 144, 147 | eqtr3di 2792 | . . . . 5
⊢ (𝑚 ∈ (𝑀...𝑁) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)) | 
| 149 | 148 | sumeq2i 15734 | . . . 4
⊢
Σ𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) | 
| 150 |  | sumfc 15745 | . . . 4
⊢
Σ𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴 | 
| 151 | 149, 150 | eqtri 2765 | . . 3
⊢
Σ𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴 | 
| 152 | 151 | fveq2i 6909 | . 2
⊢
(exp‘Σ𝑚
∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴) | 
| 153 | 133, 143,
152 | 3eqtr3g 2800 | 1
⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)) |