MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodefsum Structured version   Visualization version   GIF version

Theorem fprodefsum 15227
Description: Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.)
Hypotheses
Ref Expression
fprodefsum.1 𝑍 = (ℤ𝑀)
fprodefsum.2 (𝜑𝑁𝑍)
fprodefsum.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodefsum (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodefsum
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodefsum.2 . . . 4 (𝜑𝑁𝑍)
2 fprodefsum.1 . . . 4 𝑍 = (ℤ𝑀)
31, 2syl6eleq 2869 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 6930 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 15054 . . . . . 6 (𝑎 = 𝑀 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
64sumeq1d 14839 . . . . . . 7 (𝑎 = 𝑀 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))
76fveq2d 6450 . . . . . 6 (𝑎 = 𝑀 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))
85, 7eqeq12d 2793 . . . . 5 (𝑎 = 𝑀 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))))
98imbi2d 332 . . . 4 (𝑎 = 𝑀 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))))
10 oveq2 6930 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 15054 . . . . . 6 (𝑎 = 𝑛 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
1210sumeq1d 14839 . . . . . . 7 (𝑎 = 𝑛 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))
1312fveq2d 6450 . . . . . 6 (𝑎 = 𝑛 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))
1411, 13eqeq12d 2793 . . . . 5 (𝑎 = 𝑛 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))))
1514imbi2d 332 . . . 4 (𝑎 = 𝑛 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))))
16 oveq2 6930 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 15054 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
1816sumeq1d 14839 . . . . . . 7 (𝑎 = (𝑛 + 1) → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚))
1918fveq2d 6450 . . . . . 6 (𝑎 = (𝑛 + 1) → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))
2017, 19eqeq12d 2793 . . . . 5 (𝑎 = (𝑛 + 1) → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚))))
2120imbi2d 332 . . . 4 (𝑎 = (𝑛 + 1) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
22 oveq2 6930 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 15054 . . . . . 6 (𝑎 = 𝑁 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
2422sumeq1d 14839 . . . . . . 7 (𝑎 = 𝑁 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))
2524fveq2d 6450 . . . . . 6 (𝑎 = 𝑁 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))
2623, 25eqeq12d 2793 . . . . 5 (𝑎 = 𝑁 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))))
2726imbi2d 332 . . . 4 (𝑎 = 𝑁 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))))
28 fzsn 12700 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2928adantl 475 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3029prodeq1d 15054 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
31 simpr 479 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
32 uzid 12007 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3332, 2syl6eleqr 2870 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑍)
34 fprodefsum.3 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
35 efcl 15215 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
3634, 35syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (exp‘𝐴) ∈ ℂ)
3736fmpttd 6649 . . . . . . . . . 10 (𝜑 → (𝑘𝑍 ↦ (exp‘𝐴)):𝑍⟶ℂ)
3837ffvelrnda 6623 . . . . . . . . 9 ((𝜑𝑀𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ)
3933, 38sylan2 586 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ)
40 fveq2 6446 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4140prodsn 15095 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) → ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4231, 39, 41syl2anc 579 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4333adantl 475 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → 𝑀𝑍)
44 fvex 6459 . . . . . . . 8 (exp‘𝑀 / 𝑘𝐴) ∈ V
45 nfcv 2934 . . . . . . . . 9 𝑘𝑀
46 nfcv 2934 . . . . . . . . . 10 𝑘exp
47 nfcsb1v 3767 . . . . . . . . . 10 𝑘𝑀 / 𝑘𝐴
4846, 47nffv 6456 . . . . . . . . 9 𝑘(exp‘𝑀 / 𝑘𝐴)
49 csbeq1a 3760 . . . . . . . . . 10 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
5049fveq2d 6450 . . . . . . . . 9 (𝑘 = 𝑀 → (exp‘𝐴) = (exp‘𝑀 / 𝑘𝐴))
51 eqid 2778 . . . . . . . . 9 (𝑘𝑍 ↦ (exp‘𝐴)) = (𝑘𝑍 ↦ (exp‘𝐴))
5245, 48, 50, 51fvmptf 6562 . . . . . . . 8 ((𝑀𝑍 ∧ (exp‘𝑀 / 𝑘𝐴) ∈ V) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘𝑀 / 𝑘𝐴))
5343, 44, 52sylancl 580 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘𝑀 / 𝑘𝐴))
5430, 42, 533eqtrd 2818 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘𝑀 / 𝑘𝐴))
5529sumeq1d 14839 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚))
5634fmpttd 6649 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
5756ffvelrnda 6623 . . . . . . . . . 10 ((𝜑𝑀𝑍) → ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ)
5833, 57sylan2 586 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ)
59 fveq2 6446 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6059sumsn 14882 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ) → Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6131, 58, 60syl2anc 579 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6234ralrimiva 3148 . . . . . . . . . 10 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
6347nfel1 2948 . . . . . . . . . . . 12 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
6449eleq1d 2844 . . . . . . . . . . . 12 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
6563, 64rspc 3505 . . . . . . . . . . 11 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
6665impcom 398 . . . . . . . . . 10 ((∀𝑘𝑍 𝐴 ∈ ℂ ∧ 𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
6762, 33, 66syl2an 589 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
68 eqid 2778 . . . . . . . . . 10 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
6968fvmpts 6545 . . . . . . . . 9 ((𝑀𝑍𝑀 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑀) = 𝑀 / 𝑘𝐴)
7043, 67, 69syl2anc 579 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍𝐴)‘𝑀) = 𝑀 / 𝑘𝐴)
7155, 61, 703eqtrd 2818 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚) = 𝑀 / 𝑘𝐴)
7271fveq2d 6450 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)) = (exp‘𝑀 / 𝑘𝐴))
7354, 72eqtr4d 2817 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))
7473expcom 404 . . . 4 (𝑀 ∈ ℤ → (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))))
75 simp3 1129 . . . . . . . . . 10 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))
762peano2uzs 12048 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
77 simpr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) ∈ 𝑍)
78 nfcsb1v 3767 . . . . . . . . . . . . . . . . . 18 𝑘(𝑛 + 1) / 𝑘𝐴
7978nfel1 2948 . . . . . . . . . . . . . . . . 17 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
80 csbeq1a 3760 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8180eleq1d 2844 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8279, 81rspc 3505 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8362, 82mpan9 502 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
84 efcl 15215 . . . . . . . . . . . . . . 15 ((𝑛 + 1) / 𝑘𝐴 ∈ ℂ → (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ)
86 nfcv 2934 . . . . . . . . . . . . . . 15 𝑘(𝑛 + 1)
8746, 78nffv 6456 . . . . . . . . . . . . . . 15 𝑘(exp‘(𝑛 + 1) / 𝑘𝐴)
8880fveq2d 6450 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → (exp‘𝐴) = (exp‘(𝑛 + 1) / 𝑘𝐴))
8986, 87, 88, 51fvmptf 6562 . . . . . . . . . . . . . 14 (((𝑛 + 1) ∈ 𝑍 ∧ (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9077, 85, 89syl2anc 579 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9168fvmpts 6545 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ 𝑍(𝑛 + 1) / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) = (𝑛 + 1) / 𝑘𝐴)
9277, 83, 91syl2anc 579 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) = (𝑛 + 1) / 𝑘𝐴)
9392fveq2d 6450 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9490, 93eqtr4d 2817 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
9576, 94sylan2 586 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
96953adant3 1123 . . . . . . . . . 10 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
9775, 96oveq12d 6940 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
98 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
9998, 2syl6eleq 2869 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
100 elfzuz 12655 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚 ∈ (ℤ𝑀))
101100, 2syl6eleqr 2870 . . . . . . . . . . . . 13 (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚𝑍)
10237ffvelrnda 6623 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
103101, 102sylan2 586 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
104103adantlr 705 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
105 fveq2 6446 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)))
10699, 104, 105fprodp1 15102 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))))
1071063adant3 1123 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))))
10856ffvelrnda 6623 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
109101, 108sylan2 586 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
110109adantlr 705 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
111 fveq2 6446 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘(𝑛 + 1)))
11299, 110, 111fsump1 14892 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚) = (Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1))))
113112fveq2d 6450 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))))
114 fzfid 13091 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
115 elfzuz 12655 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑀...𝑛) → 𝑚 ∈ (ℤ𝑀))
116115, 2syl6eleqr 2870 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑀...𝑛) → 𝑚𝑍)
117116, 108sylan2 586 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀...𝑛)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
118117adantlr 705 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...𝑛)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
119114, 118fsumcl 14871 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
12056ffvelrnda 6623 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ)
12176, 120sylan2 586 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ)
122 efadd 15226 . . . . . . . . . . . 12 ((Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) ∈ ℂ ∧ ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
123119, 121, 122syl2anc 579 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
124113, 123eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
1251243adant3 1123 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
12697, 107, 1253eqtr4d 2824 . . . . . . . 8 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))
1271263exp 1109 . . . . . . 7 (𝜑 → (𝑛𝑍 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
128127com12 32 . . . . . 6 (𝑛𝑍 → (𝜑 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
129128a2d 29 . . . . 5 (𝑛𝑍 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
1302eqcomi 2787 . . . . 5 (ℤ𝑀) = 𝑍
131129, 130eleq2s 2877 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
1329, 15, 21, 27, 74, 131uzind4 12052 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))))
1333, 132mpcom 38 . 2 (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))
134 fzssuz 12699 . . . . . . . 8 (𝑀...𝑁) ⊆ (ℤ𝑀)
135134, 2sseqtr4i 3857 . . . . . . 7 (𝑀...𝑁) ⊆ 𝑍
136 resmpt 5699 . . . . . . 7 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴)))
137135, 136ax-mp 5 . . . . . 6 ((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))
138137fveq1i 6447 . . . . 5 (((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)
139 fvres 6465 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → (((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
140138, 139syl5reqr 2829 . . . 4 (𝑚 ∈ (𝑀...𝑁) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚))
141140prodeq2i 15052 . . 3 𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)
142 prodfc 15078 . . 3 𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴)
143141, 142eqtri 2802 . 2 𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴)
144 resmpt 5699 . . . . . . . 8 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴))
145135, 144ax-mp 5 . . . . . . 7 ((𝑘𝑍𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)
146145fveq1i 6447 . . . . . 6 (((𝑘𝑍𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)
147 fvres 6465 . . . . . 6 (𝑚 ∈ (𝑀...𝑁) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
148146, 147syl5reqr 2829 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚))
149148sumeq2i 14837 . . . 4 Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)
150 sumfc 14847 . . . 4 Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴
151149, 150eqtri 2802 . . 3 Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴
152151fveq2i 6449 . 2 (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)
153133, 143, 1523eqtr3g 2837 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  csb 3751  wss 3792  {csn 4398  cmpt 4965  cres 5357  cfv 6135  (class class class)co 6922  cc 10270  1c1 10273   + caddc 10275   · cmul 10277  cz 11728  cuz 11992  ...cfz 12643  Σcsu 14824  cprod 15038  expce 15194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ico 12493  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-prod 15039  df-ef 15200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator