Step | Hyp | Ref
| Expression |
1 | | fprodefsum.2 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
2 | | fprodefsum.1 |
. . . 4
⊢ 𝑍 =
(ℤ≥‘𝑀) |
3 | 1, 2 | eleqtrdi 2849 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | oveq2 7275 |
. . . . . . 7
⊢ (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀)) |
5 | 4 | prodeq1d 15641 |
. . . . . 6
⊢ (𝑎 = 𝑀 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) |
6 | 4 | sumeq1d 15423 |
. . . . . . 7
⊢ (𝑎 = 𝑀 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
7 | 6 | fveq2d 6770 |
. . . . . 6
⊢ (𝑎 = 𝑀 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
8 | 5, 7 | eqeq12d 2754 |
. . . . 5
⊢ (𝑎 = 𝑀 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) |
9 | 8 | imbi2d 341 |
. . . 4
⊢ (𝑎 = 𝑀 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
10 | | oveq2 7275 |
. . . . . . 7
⊢ (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛)) |
11 | 10 | prodeq1d 15641 |
. . . . . 6
⊢ (𝑎 = 𝑛 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) |
12 | 10 | sumeq1d 15423 |
. . . . . . 7
⊢ (𝑎 = 𝑛 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
13 | 12 | fveq2d 6770 |
. . . . . 6
⊢ (𝑎 = 𝑛 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
14 | 11, 13 | eqeq12d 2754 |
. . . . 5
⊢ (𝑎 = 𝑛 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) |
15 | 14 | imbi2d 341 |
. . . 4
⊢ (𝑎 = 𝑛 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
16 | | oveq2 7275 |
. . . . . . 7
⊢ (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1))) |
17 | 16 | prodeq1d 15641 |
. . . . . 6
⊢ (𝑎 = (𝑛 + 1) → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) |
18 | 16 | sumeq1d 15423 |
. . . . . . 7
⊢ (𝑎 = (𝑛 + 1) → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
19 | 18 | fveq2d 6770 |
. . . . . 6
⊢ (𝑎 = (𝑛 + 1) → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
20 | 17, 19 | eqeq12d 2754 |
. . . . 5
⊢ (𝑎 = (𝑛 + 1) → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) |
21 | 20 | imbi2d 341 |
. . . 4
⊢ (𝑎 = (𝑛 + 1) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
22 | | oveq2 7275 |
. . . . . . 7
⊢ (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁)) |
23 | 22 | prodeq1d 15641 |
. . . . . 6
⊢ (𝑎 = 𝑁 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) |
24 | 22 | sumeq1d 15423 |
. . . . . . 7
⊢ (𝑎 = 𝑁 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
25 | 24 | fveq2d 6770 |
. . . . . 6
⊢ (𝑎 = 𝑁 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
26 | 23, 25 | eqeq12d 2754 |
. . . . 5
⊢ (𝑎 = 𝑁 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) |
27 | 26 | imbi2d 341 |
. . . 4
⊢ (𝑎 = 𝑁 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
28 | | fzsn 13308 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) |
29 | 28 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀}) |
30 | 29 | prodeq1d 15641 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) |
31 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) |
32 | | uzid 12607 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
33 | 32, 2 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ 𝑍) |
34 | | fprodefsum.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
35 | | efcl 15802 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(exp‘𝐴) ∈
ℂ) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (exp‘𝐴) ∈ ℂ) |
37 | 36 | fmpttd 6981 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ (exp‘𝐴)):𝑍⟶ℂ) |
38 | 37 | ffvelrnda 6953 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) |
39 | 33, 38 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) |
40 | | fveq2 6766 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀)) |
41 | 40 | prodsn 15682 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) → ∏𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀)) |
42 | 31, 39, 41 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀)) |
43 | 33 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ 𝑍) |
44 | | fvex 6779 |
. . . . . . . 8
⊢
(exp‘⦋𝑀 / 𝑘⦌𝐴) ∈ V |
45 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝑀 |
46 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑘exp |
47 | | nfcsb1v 3856 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐴 |
48 | 46, 47 | nffv 6776 |
. . . . . . . . 9
⊢
Ⅎ𝑘(exp‘⦋𝑀 / 𝑘⦌𝐴) |
49 | | csbeq1a 3845 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → 𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
50 | 49 | fveq2d 6770 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (exp‘𝐴) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) |
51 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) = (𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) |
52 | 45, 48, 50, 51 | fvmptf 6888 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑍 ∧ (exp‘⦋𝑀 / 𝑘⦌𝐴) ∈ V) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) |
53 | 43, 44, 52 | sylancl 586 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) |
54 | 30, 42, 53 | 3eqtrd 2782 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) |
55 | 29 | sumeq1d 15423 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
56 | 34 | fmpttd 6981 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝑍 ↦ 𝐴):𝑍⟶ℂ) |
57 | 56 | ffvelrnda 6953 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑀 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) ∈ ℂ) |
58 | 33, 57 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) ∈ ℂ) |
59 | | fveq2 6766 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀)) |
60 | 59 | sumsn 15468 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℤ ∧ ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) ∈ ℂ) → Σ𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀)) |
61 | 31, 58, 60 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ {𝑀} ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀)) |
62 | 34 | ralrimiva 3108 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ) |
63 | 47 | nfel1 2923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ |
64 | 49 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ)) |
65 | 63, 64 | rspc 3546 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ)) |
66 | 65 | impcom 408 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝑍 𝐴 ∈ ℂ ∧ 𝑀 ∈ 𝑍) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
67 | 62, 33, 66 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
68 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝑍 ↦ 𝐴) = (𝑘 ∈ 𝑍 ↦ 𝐴) |
69 | 68 | fvmpts 6870 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑍 ∧ ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) = ⦋𝑀 / 𝑘⦌𝐴) |
70 | 43, 67, 69 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑀) = ⦋𝑀 / 𝑘⦌𝐴) |
71 | 55, 61, 70 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ⦋𝑀 / 𝑘⦌𝐴) |
72 | 71 | fveq2d 6770 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) →
(exp‘Σ𝑚 ∈
(𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘⦋𝑀 / 𝑘⦌𝐴)) |
73 | 54, 72 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
74 | 73 | expcom 414 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) |
75 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
76 | 2 | peano2uzs 12652 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 → (𝑛 + 1) ∈ 𝑍) |
77 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) ∈ 𝑍) |
78 | | nfcsb1v 3856 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋(𝑛 + 1) / 𝑘⦌𝐴 |
79 | 78 | nfel1 2923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ |
80 | | csbeq1a 3845 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑛 + 1) → 𝐴 = ⦋(𝑛 + 1) / 𝑘⦌𝐴) |
81 | 80 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ)) |
82 | 79, 81 | rspc 3546 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ 𝑍 → (∀𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ)) |
83 | 62, 82 | mpan9 507 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ) |
84 | | efcl 15802 |
. . . . . . . . . . . . . . 15
⊢
(⦋(𝑛 +
1) / 𝑘⦌𝐴 ∈ ℂ →
(exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) ∈ ℂ) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) ∈ ℂ) |
86 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑛 + 1) |
87 | 46, 78 | nffv 6776 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) |
88 | 80 | fveq2d 6770 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → (exp‘𝐴) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) |
89 | 86, 87, 88, 51 | fvmptf 6888 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 + 1) ∈ 𝑍 ∧ (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴) ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) |
90 | 77, 85, 89 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) |
91 | 68 | fvmpts 6870 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 + 1) ∈ 𝑍 ∧ ⦋(𝑛 + 1) / 𝑘⦌𝐴 ∈ ℂ) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) = ⦋(𝑛 + 1) / 𝑘⦌𝐴) |
92 | 77, 83, 91 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) = ⦋(𝑛 + 1) / 𝑘⦌𝐴) |
93 | 92 | fveq2d 6770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))) = (exp‘⦋(𝑛 + 1) / 𝑘⦌𝐴)) |
94 | 90, 93 | eqtr4d 2781 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) |
95 | 76, 94 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) |
96 | 95 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) |
97 | 75, 96 | oveq12d 7285 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) |
98 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
99 | 98, 2 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
100 | | elfzuz 13262 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚 ∈ (ℤ≥‘𝑀)) |
101 | 100, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚 ∈ 𝑍) |
102 | 37 | ffvelrnda 6953 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ) |
103 | 101, 102 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ) |
104 | 103 | adantlr 712 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ) |
105 | | fveq2 6766 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑛 + 1) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))) |
106 | 99, 104, 105 | fprodp1 15689 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)))) |
107 | 106 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)))) |
108 | 56 | ffvelrnda 6953 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
109 | 101, 108 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
110 | 109 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
111 | | fveq2 6766 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑛 + 1) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))) |
112 | 99, 110, 111 | fsump1 15478 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = (Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) |
113 | 112 | fveq2d 6770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) |
114 | | fzfid 13703 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀...𝑛) ∈ Fin) |
115 | | elfzuz 13262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (𝑀...𝑛) → 𝑚 ∈ (ℤ≥‘𝑀)) |
116 | 115, 2 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (𝑀...𝑛) → 𝑚 ∈ 𝑍) |
117 | 116, 108 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀...𝑛)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
118 | 117 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑚 ∈ (𝑀...𝑛)) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
119 | 114, 118 | fsumcl 15455 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ) |
120 | 56 | ffvelrnda 6953 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) ∈ ℂ) |
121 | 76, 120 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) ∈ ℂ) |
122 | | efadd 15813 |
. . . . . . . . . . . 12
⊢
((Σ𝑚 ∈
(𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) ∈ ℂ ∧ ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)) ∈ ℂ) →
(exp‘(Σ𝑚 ∈
(𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) |
123 | 119, 121,
122 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) + ((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) |
124 | 113, 123 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) |
125 | 124 | 3adant3 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) · (exp‘((𝑘 ∈ 𝑍 ↦ 𝐴)‘(𝑛 + 1))))) |
126 | 97, 107, 125 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
127 | 126 | 3exp 1118 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
128 | 127 | com12 32 |
. . . . . 6
⊢ (𝑛 ∈ 𝑍 → (𝜑 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
129 | 128 | a2d 29 |
. . . . 5
⊢ (𝑛 ∈ 𝑍 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
130 | 2 | eqcomi 2747 |
. . . . 5
⊢
(ℤ≥‘𝑀) = 𝑍 |
131 | 129, 130 | eleq2s 2857 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))))) |
132 | 9, 15, 21, 27, 74, 131 | uzind4 12656 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)))) |
133 | 3, 132 | mpcom 38 |
. 2
⊢ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚))) |
134 | | fvres 6785 |
. . . . 5
⊢ (𝑚 ∈ (𝑀...𝑁) → (((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚)) |
135 | | fzssuz 13307 |
. . . . . . . 8
⊢ (𝑀...𝑁) ⊆
(ℤ≥‘𝑀) |
136 | 135, 2 | sseqtrri 3957 |
. . . . . . 7
⊢ (𝑀...𝑁) ⊆ 𝑍 |
137 | | resmpt 5938 |
. . . . . . 7
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))) |
138 | 136, 137 | ax-mp 5 |
. . . . . 6
⊢ ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴)) |
139 | 138 | fveq1i 6767 |
. . . . 5
⊢ (((𝑘 ∈ 𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) |
140 | 134, 139 | eqtr3di 2793 |
. . . 4
⊢ (𝑚 ∈ (𝑀...𝑁) → ((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)) |
141 | 140 | prodeq2i 15639 |
. . 3
⊢
∏𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) |
142 | | prodfc 15665 |
. . 3
⊢
∏𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) |
143 | 141, 142 | eqtri 2766 |
. 2
⊢
∏𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) |
144 | | fvres 6785 |
. . . . . 6
⊢ (𝑚 ∈ (𝑀...𝑁) → (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) |
145 | | resmpt 5938 |
. . . . . . . 8
⊢ ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) |
146 | 136, 145 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴) |
147 | 146 | fveq1i 6767 |
. . . . . 6
⊢ (((𝑘 ∈ 𝑍 ↦ 𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) |
148 | 144, 147 | eqtr3di 2793 |
. . . . 5
⊢ (𝑚 ∈ (𝑀...𝑁) → ((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)) |
149 | 148 | sumeq2i 15421 |
. . . 4
⊢
Σ𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) |
150 | | sumfc 15431 |
. . . 4
⊢
Σ𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴 |
151 | 149, 150 | eqtri 2766 |
. . 3
⊢
Σ𝑚 ∈
(𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴 |
152 | 151 | fveq2i 6769 |
. 2
⊢
(exp‘Σ𝑚
∈ (𝑀...𝑁)((𝑘 ∈ 𝑍 ↦ 𝐴)‘𝑚)) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴) |
153 | 133, 143,
152 | 3eqtr3g 2801 |
1
⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)) |