MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodefsum Structured version   Visualization version   GIF version

Theorem fprodefsum 15442
Description: Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.)
Hypotheses
Ref Expression
fprodefsum.1 𝑍 = (ℤ𝑀)
fprodefsum.2 (𝜑𝑁𝑍)
fprodefsum.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodefsum (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodefsum
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodefsum.2 . . . 4 (𝜑𝑁𝑍)
2 fprodefsum.1 . . . 4 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2923 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 7158 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 15269 . . . . . 6 (𝑎 = 𝑀 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
64sumeq1d 15052 . . . . . . 7 (𝑎 = 𝑀 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))
76fveq2d 6669 . . . . . 6 (𝑎 = 𝑀 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))
85, 7eqeq12d 2837 . . . . 5 (𝑎 = 𝑀 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))))
98imbi2d 343 . . . 4 (𝑎 = 𝑀 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))))
10 oveq2 7158 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 15269 . . . . . 6 (𝑎 = 𝑛 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
1210sumeq1d 15052 . . . . . . 7 (𝑎 = 𝑛 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))
1312fveq2d 6669 . . . . . 6 (𝑎 = 𝑛 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))
1411, 13eqeq12d 2837 . . . . 5 (𝑎 = 𝑛 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))))
1514imbi2d 343 . . . 4 (𝑎 = 𝑛 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))))
16 oveq2 7158 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 15269 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
1816sumeq1d 15052 . . . . . . 7 (𝑎 = (𝑛 + 1) → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚))
1918fveq2d 6669 . . . . . 6 (𝑎 = (𝑛 + 1) → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))
2017, 19eqeq12d 2837 . . . . 5 (𝑎 = (𝑛 + 1) → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚))))
2120imbi2d 343 . . . 4 (𝑎 = (𝑛 + 1) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
22 oveq2 7158 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 15269 . . . . . 6 (𝑎 = 𝑁 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
2422sumeq1d 15052 . . . . . . 7 (𝑎 = 𝑁 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))
2524fveq2d 6669 . . . . . 6 (𝑎 = 𝑁 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))
2623, 25eqeq12d 2837 . . . . 5 (𝑎 = 𝑁 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))))
2726imbi2d 343 . . . 4 (𝑎 = 𝑁 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))))
28 fzsn 12943 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2928adantl 484 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3029prodeq1d 15269 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
31 simpr 487 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
32 uzid 12252 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3332, 2eleqtrrdi 2924 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑍)
34 fprodefsum.3 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
35 efcl 15430 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
3634, 35syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (exp‘𝐴) ∈ ℂ)
3736fmpttd 6874 . . . . . . . . . 10 (𝜑 → (𝑘𝑍 ↦ (exp‘𝐴)):𝑍⟶ℂ)
3837ffvelrnda 6846 . . . . . . . . 9 ((𝜑𝑀𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ)
3933, 38sylan2 594 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ)
40 fveq2 6665 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4140prodsn 15310 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) → ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4231, 39, 41syl2anc 586 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4333adantl 484 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → 𝑀𝑍)
44 fvex 6678 . . . . . . . 8 (exp‘𝑀 / 𝑘𝐴) ∈ V
45 nfcv 2977 . . . . . . . . 9 𝑘𝑀
46 nfcv 2977 . . . . . . . . . 10 𝑘exp
47 nfcsb1v 3907 . . . . . . . . . 10 𝑘𝑀 / 𝑘𝐴
4846, 47nffv 6675 . . . . . . . . 9 𝑘(exp‘𝑀 / 𝑘𝐴)
49 csbeq1a 3897 . . . . . . . . . 10 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
5049fveq2d 6669 . . . . . . . . 9 (𝑘 = 𝑀 → (exp‘𝐴) = (exp‘𝑀 / 𝑘𝐴))
51 eqid 2821 . . . . . . . . 9 (𝑘𝑍 ↦ (exp‘𝐴)) = (𝑘𝑍 ↦ (exp‘𝐴))
5245, 48, 50, 51fvmptf 6784 . . . . . . . 8 ((𝑀𝑍 ∧ (exp‘𝑀 / 𝑘𝐴) ∈ V) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘𝑀 / 𝑘𝐴))
5343, 44, 52sylancl 588 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘𝑀 / 𝑘𝐴))
5430, 42, 533eqtrd 2860 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘𝑀 / 𝑘𝐴))
5529sumeq1d 15052 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚))
5634fmpttd 6874 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
5756ffvelrnda 6846 . . . . . . . . . 10 ((𝜑𝑀𝑍) → ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ)
5833, 57sylan2 594 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ)
59 fveq2 6665 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6059sumsn 15095 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ) → Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6131, 58, 60syl2anc 586 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6234ralrimiva 3182 . . . . . . . . . 10 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
6347nfel1 2994 . . . . . . . . . . . 12 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
6449eleq1d 2897 . . . . . . . . . . . 12 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
6563, 64rspc 3611 . . . . . . . . . . 11 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
6665impcom 410 . . . . . . . . . 10 ((∀𝑘𝑍 𝐴 ∈ ℂ ∧ 𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
6762, 33, 66syl2an 597 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
68 eqid 2821 . . . . . . . . . 10 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
6968fvmpts 6766 . . . . . . . . 9 ((𝑀𝑍𝑀 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑀) = 𝑀 / 𝑘𝐴)
7043, 67, 69syl2anc 586 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍𝐴)‘𝑀) = 𝑀 / 𝑘𝐴)
7155, 61, 703eqtrd 2860 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚) = 𝑀 / 𝑘𝐴)
7271fveq2d 6669 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)) = (exp‘𝑀 / 𝑘𝐴))
7354, 72eqtr4d 2859 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))
7473expcom 416 . . . 4 (𝑀 ∈ ℤ → (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))))
75 simp3 1134 . . . . . . . . . 10 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))
762peano2uzs 12296 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
77 simpr 487 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) ∈ 𝑍)
78 nfcsb1v 3907 . . . . . . . . . . . . . . . . . 18 𝑘(𝑛 + 1) / 𝑘𝐴
7978nfel1 2994 . . . . . . . . . . . . . . . . 17 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
80 csbeq1a 3897 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8180eleq1d 2897 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8279, 81rspc 3611 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8362, 82mpan9 509 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
84 efcl 15430 . . . . . . . . . . . . . . 15 ((𝑛 + 1) / 𝑘𝐴 ∈ ℂ → (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ)
86 nfcv 2977 . . . . . . . . . . . . . . 15 𝑘(𝑛 + 1)
8746, 78nffv 6675 . . . . . . . . . . . . . . 15 𝑘(exp‘(𝑛 + 1) / 𝑘𝐴)
8880fveq2d 6669 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → (exp‘𝐴) = (exp‘(𝑛 + 1) / 𝑘𝐴))
8986, 87, 88, 51fvmptf 6784 . . . . . . . . . . . . . 14 (((𝑛 + 1) ∈ 𝑍 ∧ (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9077, 85, 89syl2anc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9168fvmpts 6766 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ 𝑍(𝑛 + 1) / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) = (𝑛 + 1) / 𝑘𝐴)
9277, 83, 91syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) = (𝑛 + 1) / 𝑘𝐴)
9392fveq2d 6669 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9490, 93eqtr4d 2859 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
9576, 94sylan2 594 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
96953adant3 1128 . . . . . . . . . 10 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
9775, 96oveq12d 7168 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
98 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
9998, 2eleqtrdi 2923 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
100 elfzuz 12898 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚 ∈ (ℤ𝑀))
101100, 2eleqtrrdi 2924 . . . . . . . . . . . . 13 (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚𝑍)
10237ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
103101, 102sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
104103adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
105 fveq2 6665 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)))
10699, 104, 105fprodp1 15317 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))))
1071063adant3 1128 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))))
10856ffvelrnda 6846 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
109101, 108sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
110109adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
111 fveq2 6665 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘(𝑛 + 1)))
11299, 110, 111fsump1 15105 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚) = (Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1))))
113112fveq2d 6669 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))))
114 fzfid 13335 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
115 elfzuz 12898 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑀...𝑛) → 𝑚 ∈ (ℤ𝑀))
116115, 2eleqtrrdi 2924 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑀...𝑛) → 𝑚𝑍)
117116, 108sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀...𝑛)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
118117adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...𝑛)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
119114, 118fsumcl 15084 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
12056ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ)
12176, 120sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ)
122 efadd 15441 . . . . . . . . . . . 12 ((Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) ∈ ℂ ∧ ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
123119, 121, 122syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
124113, 123eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
1251243adant3 1128 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
12697, 107, 1253eqtr4d 2866 . . . . . . . 8 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))
1271263exp 1115 . . . . . . 7 (𝜑 → (𝑛𝑍 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
128127com12 32 . . . . . 6 (𝑛𝑍 → (𝜑 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
129128a2d 29 . . . . 5 (𝑛𝑍 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
1302eqcomi 2830 . . . . 5 (ℤ𝑀) = 𝑍
131129, 130eleq2s 2931 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
1329, 15, 21, 27, 74, 131uzind4 12300 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))))
1333, 132mpcom 38 . 2 (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))
134 fzssuz 12942 . . . . . . . 8 (𝑀...𝑁) ⊆ (ℤ𝑀)
135134, 2sseqtrri 4004 . . . . . . 7 (𝑀...𝑁) ⊆ 𝑍
136 resmpt 5900 . . . . . . 7 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴)))
137135, 136ax-mp 5 . . . . . 6 ((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))
138137fveq1i 6666 . . . . 5 (((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)
139 fvres 6684 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → (((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
140138, 139syl5reqr 2871 . . . 4 (𝑚 ∈ (𝑀...𝑁) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚))
141140prodeq2i 15267 . . 3 𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)
142 prodfc 15293 . . 3 𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴)
143141, 142eqtri 2844 . 2 𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴)
144 resmpt 5900 . . . . . . . 8 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴))
145135, 144ax-mp 5 . . . . . . 7 ((𝑘𝑍𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)
146145fveq1i 6666 . . . . . 6 (((𝑘𝑍𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)
147 fvres 6684 . . . . . 6 (𝑚 ∈ (𝑀...𝑁) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
148146, 147syl5reqr 2871 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚))
149148sumeq2i 15050 . . . 4 Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)
150 sumfc 15060 . . . 4 Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴
151149, 150eqtri 2844 . . 3 Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴
152151fveq2i 6668 . 2 (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)
153133, 143, 1523eqtr3g 2879 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  csb 3883  wss 3936  {csn 4561  cmpt 5139  cres 5552  cfv 6350  (class class class)co 7150  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  cz 11975  cuz 12237  ...cfz 12886  Σcsu 15036  cprod 15253  expce 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-prod 15254  df-ef 15415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator