MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodefsum Structured version   Visualization version   GIF version

Theorem fprodefsum 15977
Description: Move the exponential function from inside a finite product to outside a finite sum. (Contributed by Scott Fenton, 26-Dec-2017.)
Hypotheses
Ref Expression
fprodefsum.1 𝑍 = (ℤ𝑀)
fprodefsum.2 (𝜑𝑁𝑍)
fprodefsum.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fprodefsum (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴))
Distinct variable groups:   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodefsum
Dummy variables 𝑎 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fprodefsum.2 . . . 4 (𝜑𝑁𝑍)
2 fprodefsum.1 . . . 4 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2848 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 oveq2 7365 . . . . . . 7 (𝑎 = 𝑀 → (𝑀...𝑎) = (𝑀...𝑀))
54prodeq1d 15804 . . . . . 6 (𝑎 = 𝑀 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
64sumeq1d 15586 . . . . . . 7 (𝑎 = 𝑀 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))
76fveq2d 6846 . . . . . 6 (𝑎 = 𝑀 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))
85, 7eqeq12d 2752 . . . . 5 (𝑎 = 𝑀 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))))
98imbi2d 340 . . . 4 (𝑎 = 𝑀 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))))
10 oveq2 7365 . . . . . . 7 (𝑎 = 𝑛 → (𝑀...𝑎) = (𝑀...𝑛))
1110prodeq1d 15804 . . . . . 6 (𝑎 = 𝑛 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
1210sumeq1d 15586 . . . . . . 7 (𝑎 = 𝑛 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))
1312fveq2d 6846 . . . . . 6 (𝑎 = 𝑛 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))
1411, 13eqeq12d 2752 . . . . 5 (𝑎 = 𝑛 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))))
1514imbi2d 340 . . . 4 (𝑎 = 𝑛 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))))
16 oveq2 7365 . . . . . . 7 (𝑎 = (𝑛 + 1) → (𝑀...𝑎) = (𝑀...(𝑛 + 1)))
1716prodeq1d 15804 . . . . . 6 (𝑎 = (𝑛 + 1) → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
1816sumeq1d 15586 . . . . . . 7 (𝑎 = (𝑛 + 1) → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚))
1918fveq2d 6846 . . . . . 6 (𝑎 = (𝑛 + 1) → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))
2017, 19eqeq12d 2752 . . . . 5 (𝑎 = (𝑛 + 1) → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚))))
2120imbi2d 340 . . . 4 (𝑎 = (𝑛 + 1) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
22 oveq2 7365 . . . . . . 7 (𝑎 = 𝑁 → (𝑀...𝑎) = (𝑀...𝑁))
2322prodeq1d 15804 . . . . . 6 (𝑎 = 𝑁 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
2422sumeq1d 15586 . . . . . . 7 (𝑎 = 𝑁 → Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))
2524fveq2d 6846 . . . . . 6 (𝑎 = 𝑁 → (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))
2623, 25eqeq12d 2752 . . . . 5 (𝑎 = 𝑁 → (∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚)) ↔ ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))))
2726imbi2d 340 . . . 4 (𝑎 = 𝑁 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑎)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑎)((𝑘𝑍𝐴)‘𝑚))) ↔ (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))))
28 fzsn 13483 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2928adantl 482 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → (𝑀...𝑀) = {𝑀})
3029prodeq1d 15804 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
31 simpr 485 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
32 uzid 12778 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3332, 2eleqtrrdi 2849 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀𝑍)
34 fprodefsum.3 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
35 efcl 15965 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
3634, 35syl 17 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (exp‘𝐴) ∈ ℂ)
3736fmpttd 7063 . . . . . . . . . 10 (𝜑 → (𝑘𝑍 ↦ (exp‘𝐴)):𝑍⟶ℂ)
3837ffvelcdmda 7035 . . . . . . . . 9 ((𝜑𝑀𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ)
3933, 38sylan2 593 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ)
40 fveq2 6842 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4140prodsn 15845 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) ∈ ℂ) → ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4231, 39, 41syl2anc 584 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ {𝑀} ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀))
4333adantl 482 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → 𝑀𝑍)
44 fvex 6855 . . . . . . . 8 (exp‘𝑀 / 𝑘𝐴) ∈ V
45 nfcv 2907 . . . . . . . . 9 𝑘𝑀
46 nfcv 2907 . . . . . . . . . 10 𝑘exp
47 nfcsb1v 3880 . . . . . . . . . 10 𝑘𝑀 / 𝑘𝐴
4846, 47nffv 6852 . . . . . . . . 9 𝑘(exp‘𝑀 / 𝑘𝐴)
49 csbeq1a 3869 . . . . . . . . . 10 (𝑘 = 𝑀𝐴 = 𝑀 / 𝑘𝐴)
5049fveq2d 6846 . . . . . . . . 9 (𝑘 = 𝑀 → (exp‘𝐴) = (exp‘𝑀 / 𝑘𝐴))
51 eqid 2736 . . . . . . . . 9 (𝑘𝑍 ↦ (exp‘𝐴)) = (𝑘𝑍 ↦ (exp‘𝐴))
5245, 48, 50, 51fvmptf 6969 . . . . . . . 8 ((𝑀𝑍 ∧ (exp‘𝑀 / 𝑘𝐴) ∈ V) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘𝑀 / 𝑘𝐴))
5343, 44, 52sylancl 586 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑀) = (exp‘𝑀 / 𝑘𝐴))
5430, 42, 533eqtrd 2780 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘𝑀 / 𝑘𝐴))
5529sumeq1d 15586 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚))
5634fmpttd 7063 . . . . . . . . . . 11 (𝜑 → (𝑘𝑍𝐴):𝑍⟶ℂ)
5756ffvelcdmda 7035 . . . . . . . . . 10 ((𝜑𝑀𝑍) → ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ)
5833, 57sylan2 593 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ)
59 fveq2 6842 . . . . . . . . . 10 (𝑚 = 𝑀 → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6059sumsn 15631 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ ((𝑘𝑍𝐴)‘𝑀) ∈ ℂ) → Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6131, 58, 60syl2anc 584 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ {𝑀} ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘𝑀))
6234ralrimiva 3143 . . . . . . . . . 10 (𝜑 → ∀𝑘𝑍 𝐴 ∈ ℂ)
6347nfel1 2923 . . . . . . . . . . . 12 𝑘𝑀 / 𝑘𝐴 ∈ ℂ
6449eleq1d 2822 . . . . . . . . . . . 12 (𝑘 = 𝑀 → (𝐴 ∈ ℂ ↔ 𝑀 / 𝑘𝐴 ∈ ℂ))
6563, 64rspc 3569 . . . . . . . . . . 11 (𝑀𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → 𝑀 / 𝑘𝐴 ∈ ℂ))
6665impcom 408 . . . . . . . . . 10 ((∀𝑘𝑍 𝐴 ∈ ℂ ∧ 𝑀𝑍) → 𝑀 / 𝑘𝐴 ∈ ℂ)
6762, 33, 66syl2an 596 . . . . . . . . 9 ((𝜑𝑀 ∈ ℤ) → 𝑀 / 𝑘𝐴 ∈ ℂ)
68 eqid 2736 . . . . . . . . . 10 (𝑘𝑍𝐴) = (𝑘𝑍𝐴)
6968fvmpts 6951 . . . . . . . . 9 ((𝑀𝑍𝑀 / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘𝑀) = 𝑀 / 𝑘𝐴)
7043, 67, 69syl2anc 584 . . . . . . . 8 ((𝜑𝑀 ∈ ℤ) → ((𝑘𝑍𝐴)‘𝑀) = 𝑀 / 𝑘𝐴)
7155, 61, 703eqtrd 2780 . . . . . . 7 ((𝜑𝑀 ∈ ℤ) → Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚) = 𝑀 / 𝑘𝐴)
7271fveq2d 6846 . . . . . 6 ((𝜑𝑀 ∈ ℤ) → (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)) = (exp‘𝑀 / 𝑘𝐴))
7354, 72eqtr4d 2779 . . . . 5 ((𝜑𝑀 ∈ ℤ) → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚)))
7473expcom 414 . . . 4 (𝑀 ∈ ℤ → (𝜑 → ∏𝑚 ∈ (𝑀...𝑀)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑀)((𝑘𝑍𝐴)‘𝑚))))
75 simp3 1138 . . . . . . . . . 10 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)))
762peano2uzs 12827 . . . . . . . . . . . 12 (𝑛𝑍 → (𝑛 + 1) ∈ 𝑍)
77 simpr 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) ∈ 𝑍)
78 nfcsb1v 3880 . . . . . . . . . . . . . . . . . 18 𝑘(𝑛 + 1) / 𝑘𝐴
7978nfel1 2923 . . . . . . . . . . . . . . . . 17 𝑘(𝑛 + 1) / 𝑘𝐴 ∈ ℂ
80 csbeq1a 3869 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛 + 1) → 𝐴 = (𝑛 + 1) / 𝑘𝐴)
8180eleq1d 2822 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐴 ∈ ℂ ↔ (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8279, 81rspc 3569 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 𝐴 ∈ ℂ → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ))
8362, 82mpan9 507 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝑛 + 1) / 𝑘𝐴 ∈ ℂ)
84 efcl 15965 . . . . . . . . . . . . . . 15 ((𝑛 + 1) / 𝑘𝐴 ∈ ℂ → (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ)
86 nfcv 2907 . . . . . . . . . . . . . . 15 𝑘(𝑛 + 1)
8746, 78nffv 6852 . . . . . . . . . . . . . . 15 𝑘(exp‘(𝑛 + 1) / 𝑘𝐴)
8880fveq2d 6846 . . . . . . . . . . . . . . 15 (𝑘 = (𝑛 + 1) → (exp‘𝐴) = (exp‘(𝑛 + 1) / 𝑘𝐴))
8986, 87, 88, 51fvmptf 6969 . . . . . . . . . . . . . 14 (((𝑛 + 1) ∈ 𝑍 ∧ (exp‘(𝑛 + 1) / 𝑘𝐴) ∈ ℂ) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9077, 85, 89syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9168fvmpts 6951 . . . . . . . . . . . . . . 15 (((𝑛 + 1) ∈ 𝑍(𝑛 + 1) / 𝑘𝐴 ∈ ℂ) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) = (𝑛 + 1) / 𝑘𝐴)
9277, 83, 91syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) = (𝑛 + 1) / 𝑘𝐴)
9392fveq2d 6846 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))) = (exp‘(𝑛 + 1) / 𝑘𝐴))
9490, 93eqtr4d 2779 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
9576, 94sylan2 593 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
96953adant3 1132 . . . . . . . . . 10 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)) = (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1))))
9775, 96oveq12d 7375 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
98 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑛𝑍)
9998, 2eleqtrdi 2848 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
100 elfzuz 13437 . . . . . . . . . . . . . 14 (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚 ∈ (ℤ𝑀))
101100, 2eleqtrrdi 2849 . . . . . . . . . . . . 13 (𝑚 ∈ (𝑀...(𝑛 + 1)) → 𝑚𝑍)
10237ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
103101, 102sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
104103adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) ∈ ℂ)
105 fveq2 6842 . . . . . . . . . . 11 (𝑚 = (𝑛 + 1) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1)))
10699, 104, 105fprodp1 15852 . . . . . . . . . 10 ((𝜑𝑛𝑍) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))))
1071063adant3 1132 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) · ((𝑘𝑍 ↦ (exp‘𝐴))‘(𝑛 + 1))))
10856ffvelcdmda 7035 . . . . . . . . . . . . . . 15 ((𝜑𝑚𝑍) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
109101, 108sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
110109adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...(𝑛 + 1))) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
111 fveq2 6842 . . . . . . . . . . . . 13 (𝑚 = (𝑛 + 1) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘𝑍𝐴)‘(𝑛 + 1)))
11299, 110, 111fsump1 15641 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚) = (Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1))))
113112fveq2d 6846 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))))
114 fzfid 13878 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
115 elfzuz 13437 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (𝑀...𝑛) → 𝑚 ∈ (ℤ𝑀))
116115, 2eleqtrrdi 2849 . . . . . . . . . . . . . . 15 (𝑚 ∈ (𝑀...𝑛) → 𝑚𝑍)
117116, 108sylan2 593 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ (𝑀...𝑛)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
118117adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (𝑀...𝑛)) → ((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
119114, 118fsumcl 15618 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) ∈ ℂ)
12056ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ)
12176, 120sylan2 593 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ)
122 efadd 15976 . . . . . . . . . . . 12 ((Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) ∈ ℂ ∧ ((𝑘𝑍𝐴)‘(𝑛 + 1)) ∈ ℂ) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
123119, 121, 122syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (exp‘(Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚) + ((𝑘𝑍𝐴)‘(𝑛 + 1)))) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
124113, 123eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
1251243adant3 1132 . . . . . . . . 9 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)) = ((exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) · (exp‘((𝑘𝑍𝐴)‘(𝑛 + 1)))))
12697, 107, 1253eqtr4d 2786 . . . . . . . 8 ((𝜑𝑛𝑍 ∧ ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))
1271263exp 1119 . . . . . . 7 (𝜑 → (𝑛𝑍 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
128127com12 32 . . . . . 6 (𝑛𝑍 → (𝜑 → (∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚)) → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
129128a2d 29 . . . . 5 (𝑛𝑍 → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
1302eqcomi 2745 . . . . 5 (ℤ𝑀) = 𝑍
131129, 130eleq2s 2856 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → ∏𝑚 ∈ (𝑀...𝑛)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑛)((𝑘𝑍𝐴)‘𝑚))) → (𝜑 → ∏𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...(𝑛 + 1))((𝑘𝑍𝐴)‘𝑚)))))
1329, 15, 21, 27, 74, 131uzind4 12831 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚))))
1333, 132mpcom 38 . 2 (𝜑 → ∏𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)))
134 fvres 6861 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → (((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚))
135 fzssuz 13482 . . . . . . . 8 (𝑀...𝑁) ⊆ (ℤ𝑀)
136135, 2sseqtrri 3981 . . . . . . 7 (𝑀...𝑁) ⊆ 𝑍
137 resmpt 5991 . . . . . . 7 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴)))
138136, 137ax-mp 5 . . . . . 6 ((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))
139138fveq1i 6843 . . . . 5 (((𝑘𝑍 ↦ (exp‘𝐴)) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)
140134, 139eqtr3di 2791 . . . 4 (𝑚 ∈ (𝑀...𝑁) → ((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚))
141140prodeq2i 15802 . . 3 𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚)
142 prodfc 15828 . . 3 𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴)
143141, 142eqtri 2764 . 2 𝑚 ∈ (𝑀...𝑁)((𝑘𝑍 ↦ (exp‘𝐴))‘𝑚) = ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴)
144 fvres 6861 . . . . . 6 (𝑚 ∈ (𝑀...𝑁) → (((𝑘𝑍𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘𝑍𝐴)‘𝑚))
145 resmpt 5991 . . . . . . . 8 ((𝑀...𝑁) ⊆ 𝑍 → ((𝑘𝑍𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴))
146136, 145ax-mp 5 . . . . . . 7 ((𝑘𝑍𝐴) ↾ (𝑀...𝑁)) = (𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)
147146fveq1i 6843 . . . . . 6 (((𝑘𝑍𝐴) ↾ (𝑀...𝑁))‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)
148144, 147eqtr3di 2791 . . . . 5 (𝑚 ∈ (𝑀...𝑁) → ((𝑘𝑍𝐴)‘𝑚) = ((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚))
149148sumeq2i 15584 . . . 4 Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚) = Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚)
150 sumfc 15594 . . . 4 Σ𝑚 ∈ (𝑀...𝑁)((𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴
151149, 150eqtri 2764 . . 3 Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚) = Σ𝑘 ∈ (𝑀...𝑁)𝐴
152151fveq2i 6845 . 2 (exp‘Σ𝑚 ∈ (𝑀...𝑁)((𝑘𝑍𝐴)‘𝑚)) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴)
153133, 143, 1523eqtr3g 2799 1 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)(exp‘𝐴) = (exp‘Σ𝑘 ∈ (𝑀...𝑁)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  csb 3855  wss 3910  {csn 4586  cmpt 5188  cres 5635  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   + caddc 11054   · cmul 11056  cz 12499  cuz 12763  ...cfz 13424  Σcsu 15570  cprod 15788  expce 15944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-prod 15789  df-ef 15950
This theorem is referenced by:  aks4d1p1p1  40520
  Copyright terms: Public domain W3C validator