Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzto1stfv1 Structured version   Visualization version   GIF version

Theorem fzto1stfv1 32247
Description: Value of our permutation 𝑃 at 1. (Contributed by Thierry Arnoux, 23-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
Assertion
Ref Expression
fzto1stfv1 (𝐼𝐷 → (𝑃‘1) = 𝐼)
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁
Allowed substitution hint:   𝑃(𝑖)

Proof of Theorem fzto1stfv1
StepHypRef Expression
1 psgnfzto1st.p . 2 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
2 iftrue 4533 . 2 (𝑖 = 1 → if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)) = 𝐼)
3 elfzuz2 13502 . . . 4 (𝐼 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
4 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
53, 4eleq2s 2851 . . 3 (𝐼𝐷𝑁 ∈ (ℤ‘1))
6 eluzfz1 13504 . . . 4 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
76, 4eleqtrrdi 2844 . . 3 (𝑁 ∈ (ℤ‘1) → 1 ∈ 𝐷)
85, 7syl 17 . 2 (𝐼𝐷 → 1 ∈ 𝐷)
9 id 22 . 2 (𝐼𝐷𝐼𝐷)
101, 2, 8, 9fvmptd3 7018 1 (𝐼𝐷 → (𝑃‘1) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  ifcif 4527   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405  1c1 11107  cle 11245  cmin 11440  cuz 12818  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-neg 11443  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  fzto1stinvn  32250  madjusmdetlem4  32798
  Copyright terms: Public domain W3C validator