Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1stfv1 | Structured version Visualization version GIF version |
Description: Value of our permutation 𝑃 at 1. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
Ref | Expression |
---|---|
fzto1stfv1 | ⊢ (𝐼 ∈ 𝐷 → (𝑃‘1) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.p | . 2 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
2 | iftrue 4467 | . 2 ⊢ (𝑖 = 1 → if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) = 𝐼) | |
3 | elfzuz2 13259 | . . . 4 ⊢ (𝐼 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
4 | psgnfzto1st.d | . . . 4 ⊢ 𝐷 = (1...𝑁) | |
5 | 3, 4 | eleq2s 2857 | . . 3 ⊢ (𝐼 ∈ 𝐷 → 𝑁 ∈ (ℤ≥‘1)) |
6 | eluzfz1 13261 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
7 | 6, 4 | eleqtrrdi 2850 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ 𝐷) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝐷 → 1 ∈ 𝐷) |
9 | id 22 | . 2 ⊢ (𝐼 ∈ 𝐷 → 𝐼 ∈ 𝐷) | |
10 | 1, 2, 8, 9 | fvmptd3 6900 | 1 ⊢ (𝐼 ∈ 𝐷 → (𝑃‘1) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ifcif 4461 class class class wbr 5076 ↦ cmpt 5159 ‘cfv 6435 (class class class)co 7277 1c1 10870 ≤ cle 11008 − cmin 11203 ℤ≥cuz 12580 ...cfz 13237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-pre-lttri 10943 ax-pre-lttrn 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-ov 7280 df-oprab 7281 df-mpo 7282 df-1st 7831 df-2nd 7832 df-er 8496 df-en 8732 df-dom 8733 df-sdom 8734 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-neg 11206 df-z 12318 df-uz 12581 df-fz 13238 |
This theorem is referenced by: fzto1stinvn 31368 madjusmdetlem4 31777 |
Copyright terms: Public domain | W3C validator |