![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1stfv1 | Structured version Visualization version GIF version |
Description: Value of our permutation 𝑃 at 1. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
Ref | Expression |
---|---|
fzto1stfv1 | ⊢ (𝐼 ∈ 𝐷 → (𝑃‘1) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.p | . 2 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
2 | iftrue 4554 | . 2 ⊢ (𝑖 = 1 → if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) = 𝐼) | |
3 | elfzuz2 13589 | . . . 4 ⊢ (𝐼 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
4 | psgnfzto1st.d | . . . 4 ⊢ 𝐷 = (1...𝑁) | |
5 | 3, 4 | eleq2s 2862 | . . 3 ⊢ (𝐼 ∈ 𝐷 → 𝑁 ∈ (ℤ≥‘1)) |
6 | eluzfz1 13591 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
7 | 6, 4 | eleqtrrdi 2855 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ 𝐷) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝐷 → 1 ∈ 𝐷) |
9 | id 22 | . 2 ⊢ (𝐼 ∈ 𝐷 → 𝐼 ∈ 𝐷) | |
10 | 1, 2, 8, 9 | fvmptd3 7052 | 1 ⊢ (𝐼 ∈ 𝐷 → (𝑃‘1) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 1c1 11185 ≤ cle 11325 − cmin 11520 ℤ≥cuz 12903 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: fzto1stinvn 33097 madjusmdetlem4 33776 |
Copyright terms: Public domain | W3C validator |