Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzto1stinvn Structured version   Visualization version   GIF version

Theorem fzto1stinvn 32868
Description: Value of the inverse of our permutation 𝑃 at 𝐼. (Contributed by Thierry Arnoux, 23-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
psgnfzto1st.g 𝐺 = (SymGrp‘𝐷)
psgnfzto1st.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
fzto1stinvn (𝐼𝐷 → (𝑃𝐼) = 1)
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁   𝐵,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝐺(𝑖)

Proof of Theorem fzto1stinvn
StepHypRef Expression
1 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
2 psgnfzto1st.p . . . 4 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
31, 2fzto1stfv1 32865 . . 3 (𝐼𝐷 → (𝑃‘1) = 𝐼)
43fveq2d 6895 . 2 (𝐼𝐷 → (𝑃‘(𝑃‘1)) = (𝑃𝐼))
5 psgnfzto1st.g . . . . 5 𝐺 = (SymGrp‘𝐷)
6 psgnfzto1st.b . . . . 5 𝐵 = (Base‘𝐺)
71, 2, 5, 6fzto1st 32867 . . . 4 (𝐼𝐷𝑃𝐵)
85, 6symgbasf1o 19331 . . . 4 (𝑃𝐵𝑃:𝐷1-1-onto𝐷)
97, 8syl 17 . . 3 (𝐼𝐷𝑃:𝐷1-1-onto𝐷)
10 elfzuz2 13536 . . . . 5 (𝐼 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
1110, 1eleq2s 2843 . . . 4 (𝐼𝐷𝑁 ∈ (ℤ‘1))
12 eluzfz1 13538 . . . . 5 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
1312, 1eleqtrrdi 2836 . . . 4 (𝑁 ∈ (ℤ‘1) → 1 ∈ 𝐷)
1411, 13syl 17 . . 3 (𝐼𝐷 → 1 ∈ 𝐷)
15 f1ocnvfv1 7280 . . 3 ((𝑃:𝐷1-1-onto𝐷 ∧ 1 ∈ 𝐷) → (𝑃‘(𝑃‘1)) = 1)
169, 14, 15syl2anc 582 . 2 (𝐼𝐷 → (𝑃‘(𝑃‘1)) = 1)
174, 16eqtr3d 2767 1 (𝐼𝐷 → (𝑃𝐼) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  ifcif 4524   class class class wbr 5143  cmpt 5226  ccnv 5671  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7415  1c1 11137  cle 11277  cmin 11472  cuz 12850  ...cfz 13514  Basecbs 17177  SymGrpcsymg 19323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-tset 17249  df-efmnd 18823  df-symg 19324  df-pmtr 19399
This theorem is referenced by:  madjusmdetlem4  33487
  Copyright terms: Public domain W3C validator