Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzto1stinvn Structured version   Visualization version   GIF version

Theorem fzto1stinvn 30764
Description: Value of the inverse of our permutation 𝑃 at 𝐼. (Contributed by Thierry Arnoux, 23-Aug-2020.)
Hypotheses
Ref Expression
psgnfzto1st.d 𝐷 = (1...𝑁)
psgnfzto1st.p 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
psgnfzto1st.g 𝐺 = (SymGrp‘𝐷)
psgnfzto1st.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
fzto1stinvn (𝐼𝐷 → (𝑃𝐼) = 1)
Distinct variable groups:   𝐷,𝑖   𝑖,𝐼   𝑖,𝑁   𝐵,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝐺(𝑖)

Proof of Theorem fzto1stinvn
StepHypRef Expression
1 psgnfzto1st.d . . . 4 𝐷 = (1...𝑁)
2 psgnfzto1st.p . . . 4 𝑃 = (𝑖𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
31, 2fzto1stfv1 30761 . . 3 (𝐼𝐷 → (𝑃‘1) = 𝐼)
43fveq2d 6655 . 2 (𝐼𝐷 → (𝑃‘(𝑃‘1)) = (𝑃𝐼))
5 psgnfzto1st.g . . . . 5 𝐺 = (SymGrp‘𝐷)
6 psgnfzto1st.b . . . . 5 𝐵 = (Base‘𝐺)
71, 2, 5, 6fzto1st 30763 . . . 4 (𝐼𝐷𝑃𝐵)
85, 6symgbasf1o 18492 . . . 4 (𝑃𝐵𝑃:𝐷1-1-onto𝐷)
97, 8syl 17 . . 3 (𝐼𝐷𝑃:𝐷1-1-onto𝐷)
10 elfzuz2 12905 . . . . 5 (𝐼 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
1110, 1eleq2s 2934 . . . 4 (𝐼𝐷𝑁 ∈ (ℤ‘1))
12 eluzfz1 12907 . . . . 5 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
1312, 1eleqtrrdi 2927 . . . 4 (𝑁 ∈ (ℤ‘1) → 1 ∈ 𝐷)
1411, 13syl 17 . . 3 (𝐼𝐷 → 1 ∈ 𝐷)
15 f1ocnvfv1 7015 . . 3 ((𝑃:𝐷1-1-onto𝐷 ∧ 1 ∈ 𝐷) → (𝑃‘(𝑃‘1)) = 1)
169, 14, 15syl2anc 587 . 2 (𝐼𝐷 → (𝑃‘(𝑃‘1)) = 1)
174, 16eqtr3d 2861 1 (𝐼𝐷 → (𝑃𝐼) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  ifcif 4448   class class class wbr 5047  cmpt 5127  ccnv 5535  1-1-ontowf1o 6335  cfv 6336  (class class class)co 7138  1c1 10523  cle 10661  cmin 10855  cuz 12229  ...cfz 12883  Basecbs 16472  SymGrpcsymg 18484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-tset 16573  df-efmnd 18023  df-symg 18485  df-pmtr 18559
This theorem is referenced by:  madjusmdetlem4  31116
  Copyright terms: Public domain W3C validator