![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1stinvn | Structured version Visualization version GIF version |
Description: Value of the inverse of our permutation 𝑃 at 𝐼. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
psgnfzto1st.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnfzto1st.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
fzto1stinvn | ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘𝐼) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.d | . . . 4 ⊢ 𝐷 = (1...𝑁) | |
2 | psgnfzto1st.p | . . . 4 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
3 | 1, 2 | fzto1stfv1 32787 | . . 3 ⊢ (𝐼 ∈ 𝐷 → (𝑃‘1) = 𝐼) |
4 | 3 | fveq2d 6895 | . 2 ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘(𝑃‘1)) = (◡𝑃‘𝐼)) |
5 | psgnfzto1st.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐷) | |
6 | psgnfzto1st.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
7 | 1, 2, 5, 6 | fzto1st 32789 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → 𝑃 ∈ 𝐵) |
8 | 5, 6 | symgbasf1o 19313 | . . . 4 ⊢ (𝑃 ∈ 𝐵 → 𝑃:𝐷–1-1-onto→𝐷) |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐼 ∈ 𝐷 → 𝑃:𝐷–1-1-onto→𝐷) |
10 | elfzuz2 13524 | . . . . 5 ⊢ (𝐼 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
11 | 10, 1 | eleq2s 2846 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → 𝑁 ∈ (ℤ≥‘1)) |
12 | eluzfz1 13526 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
13 | 12, 1 | eleqtrrdi 2839 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ 𝐷) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐼 ∈ 𝐷 → 1 ∈ 𝐷) |
15 | f1ocnvfv1 7279 | . . 3 ⊢ ((𝑃:𝐷–1-1-onto→𝐷 ∧ 1 ∈ 𝐷) → (◡𝑃‘(𝑃‘1)) = 1) | |
16 | 9, 14, 15 | syl2anc 583 | . 2 ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘(𝑃‘1)) = 1) |
17 | 4, 16 | eqtr3d 2769 | 1 ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘𝐼) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ifcif 4524 class class class wbr 5142 ↦ cmpt 5225 ◡ccnv 5671 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 1c1 11125 ≤ cle 11265 − cmin 11460 ℤ≥cuz 12838 ...cfz 13502 Basecbs 17165 SymGrpcsymg 19305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-tset 17237 df-efmnd 18806 df-symg 19306 df-pmtr 19381 |
This theorem is referenced by: madjusmdetlem4 33354 |
Copyright terms: Public domain | W3C validator |