Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzto1stinvn | Structured version Visualization version GIF version |
Description: Value of the inverse of our permutation 𝑃 at 𝐼. (Contributed by Thierry Arnoux, 23-Aug-2020.) |
Ref | Expression |
---|---|
psgnfzto1st.d | ⊢ 𝐷 = (1...𝑁) |
psgnfzto1st.p | ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
psgnfzto1st.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnfzto1st.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
fzto1stinvn | ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘𝐼) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfzto1st.d | . . . 4 ⊢ 𝐷 = (1...𝑁) | |
2 | psgnfzto1st.p | . . . 4 ⊢ 𝑃 = (𝑖 ∈ 𝐷 ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | |
3 | 1, 2 | fzto1stfv1 31270 | . . 3 ⊢ (𝐼 ∈ 𝐷 → (𝑃‘1) = 𝐼) |
4 | 3 | fveq2d 6760 | . 2 ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘(𝑃‘1)) = (◡𝑃‘𝐼)) |
5 | psgnfzto1st.g | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐷) | |
6 | psgnfzto1st.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
7 | 1, 2, 5, 6 | fzto1st 31272 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → 𝑃 ∈ 𝐵) |
8 | 5, 6 | symgbasf1o 18897 | . . . 4 ⊢ (𝑃 ∈ 𝐵 → 𝑃:𝐷–1-1-onto→𝐷) |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝐼 ∈ 𝐷 → 𝑃:𝐷–1-1-onto→𝐷) |
10 | elfzuz2 13190 | . . . . 5 ⊢ (𝐼 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘1)) | |
11 | 10, 1 | eleq2s 2857 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → 𝑁 ∈ (ℤ≥‘1)) |
12 | eluzfz1 13192 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ (1...𝑁)) | |
13 | 12, 1 | eleqtrrdi 2850 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘1) → 1 ∈ 𝐷) |
14 | 11, 13 | syl 17 | . . 3 ⊢ (𝐼 ∈ 𝐷 → 1 ∈ 𝐷) |
15 | f1ocnvfv1 7129 | . . 3 ⊢ ((𝑃:𝐷–1-1-onto→𝐷 ∧ 1 ∈ 𝐷) → (◡𝑃‘(𝑃‘1)) = 1) | |
16 | 9, 14, 15 | syl2anc 583 | . 2 ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘(𝑃‘1)) = 1) |
17 | 4, 16 | eqtr3d 2780 | 1 ⊢ (𝐼 ∈ 𝐷 → (◡𝑃‘𝐼) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 1c1 10803 ≤ cle 10941 − cmin 11135 ℤ≥cuz 12511 ...cfz 13168 Basecbs 16840 SymGrpcsymg 18889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-symg 18890 df-pmtr 18965 |
This theorem is referenced by: madjusmdetlem4 31682 |
Copyright terms: Public domain | W3C validator |