Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gblacfnacd Structured version   Visualization version   GIF version

Theorem gblacfnacd 35089
Description: If 𝐺 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10075) holds. Note that 𝐺 must be a proper class by fndmexb 7882. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1930 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.)
Hypotheses
Ref Expression
gblacfnacd.1 (𝜑𝐺 Fn V)
gblacfnacd.2 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
Assertion
Ref Expression
gblacfnacd (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑥,𝑓   𝜑,𝑥,𝑧   𝑓,𝐺,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐺(𝑥)

Proof of Theorem gblacfnacd
StepHypRef Expression
1 gblacfnacd.1 . . . 4 (𝜑𝐺 Fn V)
2 fnfun 6618 . . . 4 (𝐺 Fn V → Fun 𝐺)
3 resfunexg 7189 . . . . 5 ((Fun 𝐺𝑥 ∈ V) → (𝐺𝑥) ∈ V)
43elvd 3453 . . . 4 (Fun 𝐺 → (𝐺𝑥) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → (𝐺𝑥) ∈ V)
6 ssv 3971 . . . . 5 𝑥 ⊆ V
7 fnssres 6641 . . . . 5 ((𝐺 Fn V ∧ 𝑥 ⊆ V) → (𝐺𝑥) Fn 𝑥)
81, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐺𝑥) Fn 𝑥)
9 gblacfnacd.2 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
10919.21bi 2190 . . . . . 6 (𝜑 → (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
11 fvres 6877 . . . . . . . 8 (𝑧𝑥 → ((𝐺𝑥)‘𝑧) = (𝐺𝑧))
1211eleq1d 2813 . . . . . . 7 (𝑧𝑥 → (((𝐺𝑥)‘𝑧) ∈ 𝑧 ↔ (𝐺𝑧) ∈ 𝑧))
1312imbi2d 340 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
1410, 13syl5ibrcom 247 . . . . 5 (𝜑 → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
1514ralrimiv 3124 . . . 4 (𝜑 → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))
168, 15jca 511 . . 3 (𝜑 → ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
17 fneq1 6609 . . . 4 (𝑓 = (𝐺𝑥) → (𝑓 Fn 𝑥 ↔ (𝐺𝑥) Fn 𝑥))
18 fveq1 6857 . . . . . . 7 (𝑓 = (𝐺𝑥) → (𝑓𝑧) = ((𝐺𝑥)‘𝑧))
1918eleq1d 2813 . . . . . 6 (𝑓 = (𝐺𝑥) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝐺𝑥)‘𝑧) ∈ 𝑧))
2019imbi2d 340 . . . . 5 (𝑓 = (𝐺𝑥) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2120ralbidv 3156 . . . 4 (𝑓 = (𝐺𝑥) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2217, 21anbi12d 632 . . 3 (𝑓 = (𝐺𝑥) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))))
235, 16, 22spcedv 3564 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
2423alrimiv 1927 1 (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3447  wss 3914  c0 4296  cres 5640  Fun wfun 6505   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator