Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gblacfnacd Structured version   Visualization version   GIF version

Theorem gblacfnacd 35096
Description: If 𝐺 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10082) holds. Note that 𝐺 must be a proper class by fndmexb 7885. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1930 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.)
Hypotheses
Ref Expression
gblacfnacd.1 (𝜑𝐺 Fn V)
gblacfnacd.2 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
Assertion
Ref Expression
gblacfnacd (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑥,𝑓   𝜑,𝑥,𝑧   𝑓,𝐺,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐺(𝑥)

Proof of Theorem gblacfnacd
StepHypRef Expression
1 gblacfnacd.1 . . . 4 (𝜑𝐺 Fn V)
2 fnfun 6621 . . . 4 (𝐺 Fn V → Fun 𝐺)
3 resfunexg 7192 . . . . 5 ((Fun 𝐺𝑥 ∈ V) → (𝐺𝑥) ∈ V)
43elvd 3456 . . . 4 (Fun 𝐺 → (𝐺𝑥) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → (𝐺𝑥) ∈ V)
6 ssv 3974 . . . . 5 𝑥 ⊆ V
7 fnssres 6644 . . . . 5 ((𝐺 Fn V ∧ 𝑥 ⊆ V) → (𝐺𝑥) Fn 𝑥)
81, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐺𝑥) Fn 𝑥)
9 gblacfnacd.2 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
10919.21bi 2190 . . . . . 6 (𝜑 → (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
11 fvres 6880 . . . . . . . 8 (𝑧𝑥 → ((𝐺𝑥)‘𝑧) = (𝐺𝑧))
1211eleq1d 2814 . . . . . . 7 (𝑧𝑥 → (((𝐺𝑥)‘𝑧) ∈ 𝑧 ↔ (𝐺𝑧) ∈ 𝑧))
1312imbi2d 340 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
1410, 13syl5ibrcom 247 . . . . 5 (𝜑 → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
1514ralrimiv 3125 . . . 4 (𝜑 → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))
168, 15jca 511 . . 3 (𝜑 → ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
17 fneq1 6612 . . . 4 (𝑓 = (𝐺𝑥) → (𝑓 Fn 𝑥 ↔ (𝐺𝑥) Fn 𝑥))
18 fveq1 6860 . . . . . . 7 (𝑓 = (𝐺𝑥) → (𝑓𝑧) = ((𝐺𝑥)‘𝑧))
1918eleq1d 2814 . . . . . 6 (𝑓 = (𝐺𝑥) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝐺𝑥)‘𝑧) ∈ 𝑧))
2019imbi2d 340 . . . . 5 (𝑓 = (𝐺𝑥) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2120ralbidv 3157 . . . 4 (𝑓 = (𝐺𝑥) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2217, 21anbi12d 632 . . 3 (𝑓 = (𝐺𝑥) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))))
235, 16, 22spcedv 3567 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
2423alrimiv 1927 1 (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  Vcvv 3450  wss 3917  c0 4299  cres 5643  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator