| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gblacfnacd | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10008) holds. Note that 𝐺 must be a proper class by fndmexb 7831. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1931 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.) |
| Ref | Expression |
|---|---|
| gblacfnacd.1 | ⊢ (𝜑 → 𝐺 Fn V) |
| gblacfnacd.2 | ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) |
| Ref | Expression |
|---|---|
| gblacfnacd | ⊢ (𝜑 → ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gblacfnacd.1 | . . . 4 ⊢ (𝜑 → 𝐺 Fn V) | |
| 2 | fnfun 6576 | . . . 4 ⊢ (𝐺 Fn V → Fun 𝐺) | |
| 3 | resfunexg 7144 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑥 ∈ V) → (𝐺 ↾ 𝑥) ∈ V) | |
| 4 | 3 | elvd 3442 | . . . 4 ⊢ (Fun 𝐺 → (𝐺 ↾ 𝑥) ∈ V) |
| 5 | 1, 2, 4 | 3syl 18 | . . 3 ⊢ (𝜑 → (𝐺 ↾ 𝑥) ∈ V) |
| 6 | ssv 3954 | . . . . 5 ⊢ 𝑥 ⊆ V | |
| 7 | fnssres 6599 | . . . . 5 ⊢ ((𝐺 Fn V ∧ 𝑥 ⊆ V) → (𝐺 ↾ 𝑥) Fn 𝑥) | |
| 8 | 1, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐺 ↾ 𝑥) Fn 𝑥) |
| 9 | gblacfnacd.2 | . . . . . . 7 ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) | |
| 10 | 9 | 19.21bi 2192 | . . . . . 6 ⊢ (𝜑 → (𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) |
| 11 | fvres 6836 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑥 → ((𝐺 ↾ 𝑥)‘𝑧) = (𝐺‘𝑧)) | |
| 12 | 11 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑥 → (((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧 ↔ (𝐺‘𝑧) ∈ 𝑧)) |
| 13 | 12 | imbi2d 340 | . . . . . 6 ⊢ (𝑧 ∈ 𝑥 → ((𝑧 ≠ ∅ → ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧))) |
| 14 | 10, 13 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → (𝑧 ∈ 𝑥 → (𝑧 ≠ ∅ → ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧))) |
| 15 | 14 | ralrimiv 3123 | . . . 4 ⊢ (𝜑 → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧)) |
| 16 | 8, 15 | jca 511 | . . 3 ⊢ (𝜑 → ((𝐺 ↾ 𝑥) Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧))) |
| 17 | fneq1 6567 | . . . 4 ⊢ (𝑓 = (𝐺 ↾ 𝑥) → (𝑓 Fn 𝑥 ↔ (𝐺 ↾ 𝑥) Fn 𝑥)) | |
| 18 | fveq1 6816 | . . . . . . 7 ⊢ (𝑓 = (𝐺 ↾ 𝑥) → (𝑓‘𝑧) = ((𝐺 ↾ 𝑥)‘𝑧)) | |
| 19 | 18 | eleq1d 2816 | . . . . . 6 ⊢ (𝑓 = (𝐺 ↾ 𝑥) → ((𝑓‘𝑧) ∈ 𝑧 ↔ ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧)) |
| 20 | 19 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = (𝐺 ↾ 𝑥) → ((𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧))) |
| 21 | 20 | ralbidv 3155 | . . . 4 ⊢ (𝑓 = (𝐺 ↾ 𝑥) → (∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) ↔ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧))) |
| 22 | 17, 21 | anbi12d 632 | . . 3 ⊢ (𝑓 = (𝐺 ↾ 𝑥) → ((𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) ↔ ((𝐺 ↾ 𝑥) Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ((𝐺 ↾ 𝑥)‘𝑧) ∈ 𝑧)))) |
| 23 | 5, 16, 22 | spcedv 3548 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| 24 | 23 | alrimiv 1928 | 1 ⊢ (𝜑 → ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 ↾ cres 5613 Fun wfun 6470 Fn wfn 6471 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |