Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gblacfnacd Structured version   Visualization version   GIF version

Theorem gblacfnacd 35075
Description: If 𝐹 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10191) holds. Note that 𝐹 must be a proper class by fndmexb 7946. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1929 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.)
Hypotheses
Ref Expression
gblacfnacd.1 (𝜑𝐹 Fn V)
gblacfnacd.2 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
Assertion
Ref Expression
gblacfnacd (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑥,𝑓   𝜑,𝑥,𝑧   𝑓,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐹(𝑥)

Proof of Theorem gblacfnacd
StepHypRef Expression
1 gblacfnacd.1 . . . 4 (𝜑𝐹 Fn V)
2 fnfun 6679 . . . 4 (𝐹 Fn V → Fun 𝐹)
3 resfunexg 7252 . . . . 5 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
43elvd 3494 . . . 4 (Fun 𝐹 → (𝐹𝑥) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → (𝐹𝑥) ∈ V)
6 ssv 4033 . . . . 5 𝑥 ⊆ V
7 fnssres 6703 . . . . 5 ((𝐹 Fn V ∧ 𝑥 ⊆ V) → (𝐹𝑥) Fn 𝑥)
81, 6, 7sylancl 585 . . . 4 (𝜑 → (𝐹𝑥) Fn 𝑥)
9 gblacfnacd.2 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
10919.21bi 2190 . . . . . 6 (𝜑 → (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
11 fvres 6939 . . . . . . . 8 (𝑧𝑥 → ((𝐹𝑥)‘𝑧) = (𝐹𝑧))
1211eleq1d 2829 . . . . . . 7 (𝑧𝑥 → (((𝐹𝑥)‘𝑧) ∈ 𝑧 ↔ (𝐹𝑧) ∈ 𝑧))
1312imbi2d 340 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧)))
1410, 13syl5ibrcom 247 . . . . 5 (𝜑 → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
1514ralrimiv 3151 . . . 4 (𝜑 → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧))
168, 15jca 511 . . 3 (𝜑 → ((𝐹𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
17 fneq1 6670 . . . 4 (𝑓 = (𝐹𝑥) → (𝑓 Fn 𝑥 ↔ (𝐹𝑥) Fn 𝑥))
18 fveq1 6919 . . . . . . 7 (𝑓 = (𝐹𝑥) → (𝑓𝑧) = ((𝐹𝑥)‘𝑧))
1918eleq1d 2829 . . . . . 6 (𝑓 = (𝐹𝑥) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝐹𝑥)‘𝑧) ∈ 𝑧))
2019imbi2d 340 . . . . 5 (𝑓 = (𝐹𝑥) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
2120ralbidv 3184 . . . 4 (𝑓 = (𝐹𝑥) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
2217, 21anbi12d 631 . . 3 (𝑓 = (𝐹𝑥) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝐹𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧))))
235, 16, 22spcedv 3611 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
2423alrimiv 1926 1 (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  c0 4352  cres 5702  Fun wfun 6567   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator