Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gblacfnacd Structured version   Visualization version   GIF version

Theorem gblacfnacd 35135
Description: If 𝐹 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10141) holds. Note that 𝐹 must be a proper class by fndmexb 7907. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1930 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.)
Hypotheses
Ref Expression
gblacfnacd.1 (𝜑𝐹 Fn V)
gblacfnacd.2 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
Assertion
Ref Expression
gblacfnacd (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑥,𝑓   𝜑,𝑥,𝑧   𝑓,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐹(𝑥)

Proof of Theorem gblacfnacd
StepHypRef Expression
1 gblacfnacd.1 . . . 4 (𝜑𝐹 Fn V)
2 fnfun 6643 . . . 4 (𝐹 Fn V → Fun 𝐹)
3 resfunexg 7212 . . . . 5 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
43elvd 3470 . . . 4 (Fun 𝐹 → (𝐹𝑥) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → (𝐹𝑥) ∈ V)
6 ssv 3988 . . . . 5 𝑥 ⊆ V
7 fnssres 6666 . . . . 5 ((𝐹 Fn V ∧ 𝑥 ⊆ V) → (𝐹𝑥) Fn 𝑥)
81, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐹𝑥) Fn 𝑥)
9 gblacfnacd.2 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
10919.21bi 2190 . . . . . 6 (𝜑 → (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧))
11 fvres 6900 . . . . . . . 8 (𝑧𝑥 → ((𝐹𝑥)‘𝑧) = (𝐹𝑧))
1211eleq1d 2820 . . . . . . 7 (𝑧𝑥 → (((𝐹𝑥)‘𝑧) ∈ 𝑧 ↔ (𝐹𝑧) ∈ 𝑧))
1312imbi2d 340 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐹𝑧) ∈ 𝑧)))
1410, 13syl5ibrcom 247 . . . . 5 (𝜑 → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
1514ralrimiv 3132 . . . 4 (𝜑 → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧))
168, 15jca 511 . . 3 (𝜑 → ((𝐹𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
17 fneq1 6634 . . . 4 (𝑓 = (𝐹𝑥) → (𝑓 Fn 𝑥 ↔ (𝐹𝑥) Fn 𝑥))
18 fveq1 6880 . . . . . . 7 (𝑓 = (𝐹𝑥) → (𝑓𝑧) = ((𝐹𝑥)‘𝑧))
1918eleq1d 2820 . . . . . 6 (𝑓 = (𝐹𝑥) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝐹𝑥)‘𝑧) ∈ 𝑧))
2019imbi2d 340 . . . . 5 (𝑓 = (𝐹𝑥) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
2120ralbidv 3164 . . . 4 (𝑓 = (𝐹𝑥) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧)))
2217, 21anbi12d 632 . . 3 (𝑓 = (𝐹𝑥) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝐹𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐹𝑥)‘𝑧) ∈ 𝑧))))
235, 16, 22spcedv 3582 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
2423alrimiv 1927 1 (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  Vcvv 3464  wss 3931  c0 4313  cres 5661  Fun wfun 6530   Fn wfn 6531  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator