Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gblacfnacd Structured version   Visualization version   GIF version

Theorem gblacfnacd 35075
Description: If 𝐺 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10016) holds. Note that 𝐺 must be a proper class by fndmexb 7839. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1930 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.)
Hypotheses
Ref Expression
gblacfnacd.1 (𝜑𝐺 Fn V)
gblacfnacd.2 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
Assertion
Ref Expression
gblacfnacd (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑥,𝑓   𝜑,𝑥,𝑧   𝑓,𝐺,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐺(𝑥)

Proof of Theorem gblacfnacd
StepHypRef Expression
1 gblacfnacd.1 . . . 4 (𝜑𝐺 Fn V)
2 fnfun 6582 . . . 4 (𝐺 Fn V → Fun 𝐺)
3 resfunexg 7151 . . . . 5 ((Fun 𝐺𝑥 ∈ V) → (𝐺𝑥) ∈ V)
43elvd 3442 . . . 4 (Fun 𝐺 → (𝐺𝑥) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → (𝐺𝑥) ∈ V)
6 ssv 3960 . . . . 5 𝑥 ⊆ V
7 fnssres 6605 . . . . 5 ((𝐺 Fn V ∧ 𝑥 ⊆ V) → (𝐺𝑥) Fn 𝑥)
81, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐺𝑥) Fn 𝑥)
9 gblacfnacd.2 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
10919.21bi 2190 . . . . . 6 (𝜑 → (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
11 fvres 6841 . . . . . . . 8 (𝑧𝑥 → ((𝐺𝑥)‘𝑧) = (𝐺𝑧))
1211eleq1d 2813 . . . . . . 7 (𝑧𝑥 → (((𝐺𝑥)‘𝑧) ∈ 𝑧 ↔ (𝐺𝑧) ∈ 𝑧))
1312imbi2d 340 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
1410, 13syl5ibrcom 247 . . . . 5 (𝜑 → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
1514ralrimiv 3120 . . . 4 (𝜑 → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))
168, 15jca 511 . . 3 (𝜑 → ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
17 fneq1 6573 . . . 4 (𝑓 = (𝐺𝑥) → (𝑓 Fn 𝑥 ↔ (𝐺𝑥) Fn 𝑥))
18 fveq1 6821 . . . . . . 7 (𝑓 = (𝐺𝑥) → (𝑓𝑧) = ((𝐺𝑥)‘𝑧))
1918eleq1d 2813 . . . . . 6 (𝑓 = (𝐺𝑥) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝐺𝑥)‘𝑧) ∈ 𝑧))
2019imbi2d 340 . . . . 5 (𝑓 = (𝐺𝑥) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2120ralbidv 3152 . . . 4 (𝑓 = (𝐺𝑥) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2217, 21anbi12d 632 . . 3 (𝑓 = (𝐺𝑥) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))))
235, 16, 22spcedv 3553 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
2423alrimiv 1927 1 (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3436  wss 3903  c0 4284  cres 5621  Fun wfun 6476   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator