Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gblacfnacd Structured version   Visualization version   GIF version

Theorem gblacfnacd 35138
Description: If 𝐺 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10008) holds. Note that 𝐺 must be a proper class by fndmexb 7831. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1931 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.)
Hypotheses
Ref Expression
gblacfnacd.1 (𝜑𝐺 Fn V)
gblacfnacd.2 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
Assertion
Ref Expression
gblacfnacd (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Distinct variable groups:   𝑥,𝑓   𝜑,𝑥,𝑧   𝑓,𝐺,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐺(𝑥)

Proof of Theorem gblacfnacd
StepHypRef Expression
1 gblacfnacd.1 . . . 4 (𝜑𝐺 Fn V)
2 fnfun 6576 . . . 4 (𝐺 Fn V → Fun 𝐺)
3 resfunexg 7144 . . . . 5 ((Fun 𝐺𝑥 ∈ V) → (𝐺𝑥) ∈ V)
43elvd 3442 . . . 4 (Fun 𝐺 → (𝐺𝑥) ∈ V)
51, 2, 43syl 18 . . 3 (𝜑 → (𝐺𝑥) ∈ V)
6 ssv 3954 . . . . 5 𝑥 ⊆ V
7 fnssres 6599 . . . . 5 ((𝐺 Fn V ∧ 𝑥 ⊆ V) → (𝐺𝑥) Fn 𝑥)
81, 6, 7sylancl 586 . . . 4 (𝜑 → (𝐺𝑥) Fn 𝑥)
9 gblacfnacd.2 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
10919.21bi 2192 . . . . . 6 (𝜑 → (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧))
11 fvres 6836 . . . . . . . 8 (𝑧𝑥 → ((𝐺𝑥)‘𝑧) = (𝐺𝑧))
1211eleq1d 2816 . . . . . . 7 (𝑧𝑥 → (((𝐺𝑥)‘𝑧) ∈ 𝑧 ↔ (𝐺𝑧) ∈ 𝑧))
1312imbi2d 340 . . . . . 6 (𝑧𝑥 → ((𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → (𝐺𝑧) ∈ 𝑧)))
1410, 13syl5ibrcom 247 . . . . 5 (𝜑 → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
1514ralrimiv 3123 . . . 4 (𝜑 → ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))
168, 15jca 511 . . 3 (𝜑 → ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
17 fneq1 6567 . . . 4 (𝑓 = (𝐺𝑥) → (𝑓 Fn 𝑥 ↔ (𝐺𝑥) Fn 𝑥))
18 fveq1 6816 . . . . . . 7 (𝑓 = (𝐺𝑥) → (𝑓𝑧) = ((𝐺𝑥)‘𝑧))
1918eleq1d 2816 . . . . . 6 (𝑓 = (𝐺𝑥) → ((𝑓𝑧) ∈ 𝑧 ↔ ((𝐺𝑥)‘𝑧) ∈ 𝑧))
2019imbi2d 340 . . . . 5 (𝑓 = (𝐺𝑥) → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2120ralbidv 3155 . . . 4 (𝑓 = (𝐺𝑥) → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧)))
2217, 21anbi12d 632 . . 3 (𝑓 = (𝐺𝑥) → ((𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) ↔ ((𝐺𝑥) Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → ((𝐺𝑥)‘𝑧) ∈ 𝑧))))
235, 16, 22spcedv 3548 . 2 (𝜑 → ∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
2423alrimiv 1928 1 (𝜑 → ∀𝑥𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  c0 4278  cres 5613  Fun wfun 6470   Fn wfn 6471  cfv 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator