Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvacALT Structured version   Visualization version   GIF version

Theorem fineqvacALT 32650
Description: Shorter proof of fineqvac 32649 using ax-rep 5164 and ax-pow 5242. (Contributed by BTernaryTau, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fineqvacALT (Fin = V → CHOICE)

Proof of Theorem fineqvacALT
StepHypRef Expression
1 ssv 3911 . . . 4 dom card ⊆ V
21a1i 11 . . 3 (Fin = V → dom card ⊆ V)
3 finnum 9462 . . . . 5 (𝑥 ∈ Fin → 𝑥 ∈ dom card)
43ssriv 3891 . . . 4 Fin ⊆ dom card
5 sseq1 3912 . . . 4 (Fin = V → (Fin ⊆ dom card ↔ V ⊆ dom card))
64, 5mpbii 236 . . 3 (Fin = V → V ⊆ dom card)
72, 6eqssd 3904 . 2 (Fin = V → dom card = V)
8 dfac10 9649 . 2 (CHOICE ↔ dom card = V)
97, 8sylibr 237 1 (Fin = V → CHOICE)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  Vcvv 3400  wss 3853  dom cdm 5535  Fincfn 8567  cardccrd 9449  CHOICEwac 9627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-om 7612  df-wrecs 7988  df-recs 8049  df-er 8332  df-en 8568  df-fin 8571  df-card 9453  df-ac 9628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator